

Copyright TIMBUS Consortium 2011 - 2013

D4.6: Use Case Specific DP & Holistic
Escrow

W4 – Processes and Methods for Digitally Preserving Business
Processes

Delivery Date: 31/03/2013

Dissemination Level: Public

TIMBUS is supported by the European Union
under the 7th Framework Programme

for research and technological development and demonstration activities (FP7/2007-2013)
under grant agreement no. 269940

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 2

Copyright TIMBUS Consortium 2011 - 2013

Deliverable Lead

Name Organisation e-mail

Stephan Strodl SBA sstrodl@sba-research.org

Contributors

Name Organisation e-mail

Stephan Strodl SBA sstrodl@sba-research.org

Konstantin Hobel SBA khobel@sba-research.org

Elisabeth Weigl SBA eweigl@sba-research.org

Tomasz Miksa SBA tmiksa@sba-research.org

Stefan Pröll SBA sproell@sba-research.org

Rudolf Mayer SBA rmayer@sba-research.org

Severin Winkler SBA swinkler@sba-research.org

Marco Unterberger SBA munterberger@sba-research.org

Johannes Binder SBA jbinder@sba-research.org

Barbara Kolany ITM barbara.kolany@uni-muenster.de

Hecheltjen Martin ITM martin.hecheltjen@uni-muenster.de

Yankova Silviya ITM silviya.yankova@uni-muenster.de

Gonçalo Antunes INESC-ID goncalo.antunes@ist.utl.pt

Ricardo Vieira INESC-ID rjcv@ist.utl.pt

Daniel Draws SQS Daniel.Draws@sqs.com

Daniel Simon SQS Daniel.Simon@sqs.com

Sven Euteneuer SQS Sven.Euteneuer@sqs.de

Internal Reviewer

Name Organisation e-mail

Thomas Molka SAP thomas.molka@sap.com

Carlos Coutinho CMS carlos.coutinho@caixamagica.pt

mailto:sstrodl@sba-research.org
mailto:sstrodl@sba-research.org
mailto:khobel@sba-research.org
mailto:eweigl@sba-research.org
mailto:tmiksa@sba-research.org
mailto:sproell@sba-research.org
mailto:rmayer@sba-research.org
mailto:swinkler@sba-research.org
mailto:munterberger@sba-research.org
mailto:jbinder@sba-research.org
mailto:barbara.kolany@uni-muenster.de
mailto:martin.hecheltjen@uni-muenster.de
mailto:silviya.yankova@uni-muenster.de
mailto:goncalo.antunes@ist.utl.pt
mailto:rjcv@ist.utl.pt
mailto:Daniel.Draws@sqs.com
mailto:Daniel.Simon@sqs.com
mailto:Sven.Euteneuer@sqs.de
mailto:thomas.molka@sap.com
mailto:carlos.coutinho@caixamagica.pt

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 3

Copyright TIMBUS Consortium 2011 - 2013

Disclaimer

The information in this document is provided "as is", and no guarantee or warranty is given that the

information is fit for any particular purpose. The above referenced consortium members shall have no

liability for damages of any kind including without limitation direct, special, indirect, or consequential

damages that may result from the use of these materials subject to any liability which is mandatory due to

applicable law. Copyright 2013 by SBA, ITM, INESC-ID and SQS.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 4

Copyright TIMBUS Consortium 2011 - 2013

Table of Contents

1 EXECUTIVE SUMMARY ... 10

2 INTRODUCTION ... 12

3 TIMBUS DIGITAL PRESERVATION PROCESS FRAMEWORK ... 15

3.1 INTRODUCTION ... 15

3.2 RELATED WORK.. 16

3.2.1 BPMN 2.0 .. 16

3.2.2 ArchiMate .. 17

3.2.3 TIMBUS methods, tools and architecture ... 17

3.2.4 Digital Preservation .. 18

3.3 TIMBUS PROCESS FRAMEWORK .. 20

3.3.1 TIMBUS approach .. 21

3.3.2 Stakeholders .. 22

3.3.3 Process scenarios .. 24

3.3.4 Artefacts .. 24

3.3.5 Environments ... 25

3.4 DIGITAL PRESERVATION PROCESS FOR BUSINESS PROCESSES.. 26

3.4.1 RACI – Responsibility assignment ... 29

3.4.2 Planning .. 31

3.4.3 Preserve ... 62

3.4.4 Redeployment .. 67

3.4.5 Monitoring and Review ... 72

3.5 ARCHITECTURAL VIEW OF THE TIMBUS PROCESS ... 80

3.5.1 Risk Management .. 82

3.5.2 Acquisition of business process context... 83

3.5.3 Assessment of Preservation Approaches ... 83

3.5.4 Preservation .. 84

3.5.5 Redeployment .. 84

3.6 USE CASE ... 85

3.6.1 WP8 Industrial Project: Civil Engineering Infrastructure .. 85

3.6.2 WP9 eHealth ... 93

3.7 SUMMARY .. 97

4 HOLISTIC SOFTWARE ESCROW ... 99

4.1 INTRODUCTION ... 99

4.1.1 Software Escrow .. 101

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 5

Copyright TIMBUS Consortium 2011 - 2013

4.1.2 Phases ... 103

4.1.3 Technical considerations ... 103

4.1.4 Legal considerations ... 108

4.2 PHASE I – PLANNING .. 114

4.2.1 Overview.. 114

4.2.2 Selection of the escrow agent .. 115

4.2.3 Alignment of the contracts pertaining to the software contracting framework 117

4.2.4 Selection of the material to be deposited ... 118

4.2.5 Rights to the source code and adjacent materials ... 119

4.3 PHASE II – EXECUTION ... 121

4.3.1 Overview.. 121

4.3.2 Deposit procedure ... 121

4.3.3 Verification - Technical Framework ... 125

4.4 PHASE III – REDEPLOYMENT .. 133

4.4.1 Overview.. 133

4.4.2 Release of the escrowed materials... 134

4.4.3 Information-/notification obligations .. 138

4.5 RELATED WORK.. 139

4.5.1 Statistic measurements .. 139

4.5.2 Rule-Based measurements ... 140

4.5.3 Readability .. 141

4.5.4 Comments .. 144

4.5.5 Maturity of software for reuse ... 146

4.6 PROTOTYPE IMPLEMENTATION ... 146

4.6.1 Implementation .. 146

4.6.2 Experiments ... 150

4.7 CONCLUSION AND OUTLOOK .. 170

5 CONCLUSION AND OUTLOOK ... 175

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 6

Copyright TIMBUS Consortium 2011 - 2013

List of Figures

Figure 1: BPMN 2.0 symbols .. 16

Figure 2: High level view of the TIMBUS DP architecture ... 18

Figure 3: TIMBUS Three phase approach .. 21

Figure 4: TIMBUS Process High Level View ... 26

Figure 5: Detailed TIMBUS Process ... 30

Figure 6: TIMBUS process .. 31

Figure 7: Acquisition of business process context ... 34

Figure 8: Assessment of Preservation Approaches ... 39

Figure 9: Acqusition business process context for Digtial Preservation ... 44

Figure 10: Abstraction of process context ... 47

Figure 11: Develop Preservation Plan ... 49

Figure 12: Preserve .. 62

Figure 13: Redeployment .. 67

Figure 14: TIMBUS Process including Monitoring ... 72

Figure 15: Monitoring of business process context in source environment ... 73

Figure 16: Monitoring of preserved business process .. 76

Figure 17: Architecutral Layered View of the TIMBUS Process ... 81

Figure 18: Risk Management - Application Usage View .. 82

Figure 19: Acquisition of business process Context Application Usage View ... 83

Figure 20: Assessment of Preservation Approches - Approaches Application Usage View 83

Figure 21: Preserve - Application Usage View ... 84

Figure 22: Redeployment - Application Usage View ... 84

Figure 23: GestBarragens main processes overview ... 85

Figure 24: LNEC Organization Diagram ... 86

Figure 25: LNEC stakeholders .. 87

Figure 26: LNEC Acquisition of business process context ... 88

Figure 27: Architectural, Layered View of the LNEC process .. 91

Figure 28: Goals identified for preservaing the dam monitoring [1] .. 92

Figure 29: High level diagram of the e-Health business process [46] ... 95

Figure 30: eHealth Business Layer: General Overview .. 96

Figure 31: eHealth Technology Layer: General Overview ... 96

Figure 32: Relationship between escrow parties .. 101

Figure 33: Software release cycle with escrow ... 104

Figure 34: Overview of Technical Software Escrow Framework ... 127

Figure 35: Overview of project in Sonar .. 147

Figure 36: Overview of violations in Sonar .. 147

Figure 37: ISO 25010 Product Quality Model .. 173

file:///D:/IFS/Projects/Timbus/svn%20official/timbus/Deliverables/FinalM24/D4.6/D4.6_M24_Use%20Case%20Specific%20DP%20&%20Holistic%20Escrow.docx%23_Toc352167288
file:///D:/IFS/Projects/Timbus/svn%20official/timbus/Deliverables/FinalM24/D4.6/D4.6_M24_Use%20Case%20Specific%20DP%20&%20Holistic%20Escrow.docx%23_Toc352167289
file:///D:/IFS/Projects/Timbus/svn%20official/timbus/Deliverables/FinalM24/D4.6/D4.6_M24_Use%20Case%20Specific%20DP%20&%20Holistic%20Escrow.docx%23_Toc352167292
file:///D:/IFS/Projects/Timbus/svn%20official/timbus/Deliverables/FinalM24/D4.6/D4.6_M24_Use%20Case%20Specific%20DP%20&%20Holistic%20Escrow.docx%23_Toc352167293
file:///D:/IFS/Projects/Timbus/svn%20official/timbus/Deliverables/FinalM24/D4.6/D4.6_M24_Use%20Case%20Specific%20DP%20&%20Holistic%20Escrow.docx%23_Toc352167294
file:///D:/IFS/Projects/Timbus/svn%20official/timbus/Deliverables/FinalM24/D4.6/D4.6_M24_Use%20Case%20Specific%20DP%20&%20Holistic%20Escrow.docx%23_Toc352167314
file:///D:/IFS/Projects/Timbus/svn%20official/timbus/Deliverables/FinalM24/D4.6/D4.6_M24_Use%20Case%20Specific%20DP%20&%20Holistic%20Escrow.docx%23_Toc352167318
file:///D:/IFS/Projects/Timbus/svn%20official/timbus/Deliverables/FinalM24/D4.6/D4.6_M24_Use%20Case%20Specific%20DP%20&%20Holistic%20Escrow.docx%23_Toc352167319
file:///D:/IFS/Projects/Timbus/svn%20official/timbus/Deliverables/FinalM24/D4.6/D4.6_M24_Use%20Case%20Specific%20DP%20&%20Holistic%20Escrow.docx%23_Toc352167320
file:///D:/IFS/Projects/Timbus/svn%20official/timbus/Deliverables/FinalM24/D4.6/D4.6_M24_Use%20Case%20Specific%20DP%20&%20Holistic%20Escrow.docx%23_Toc352167321
file:///D:/IFS/Projects/Timbus/svn%20official/timbus/Deliverables/FinalM24/D4.6/D4.6_M24_Use%20Case%20Specific%20DP%20&%20Holistic%20Escrow.docx%23_Toc352167322

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 7

Copyright TIMBUS Consortium 2011 - 2013

Figure 38: Schematic bi-directional quality model .. 174

file:///D:/IFS/Projects/Timbus/svn%20official/timbus/Deliverables/FinalM24/D4.6/D4.6_M24_Use%20Case%20Specific%20DP%20&%20Holistic%20Escrow.docx%23_Toc352167324

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 8

Copyright TIMBUS Consortium 2011 - 2013

List of Tables

Table 1: Stakeholders .. 23

Table 2: Process scenarios ... 24

Table 3: Artefacts ... 24

Table 4: Environments ... 25

Table 5: RACI .. 29

Table 6: RACI for Monitoring of Preserved BP .. 73

Table 7: Stakholder assignment .. 87

Table 8: Flesch:CommentWords results of readability-ratio experiments for Lucene 3.2 153

Table 9: Flesch-Kincaid:CommentWords results of readability-ratio experiments for Lucene 3.2 153

Table 10: Comment words : LOC results of complexity and comment length experiments for Lucene 3.2 ... 155

Table 11: Comment words : NCSS results of complexity and comment length experiments for Lucene 3.2 . 156

Table 12: Complexity : LOC results of complexity and comment length experiments for Lucene 3.2 156

Table 13: Complexity : NCSS results of complexity and comment length experiments for Lucene 3.2 157

Table 14: Overview of projects .. 159

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 9

Copyright TIMBUS Consortium 2011 - 2013

List of Acronyms

ADE Adverse drug events

BP

CI

ADL

LOC

NCSS

PMD

Business process

Continuous Integration

Architecture Description Language

Lines of Code

Non-commenting source statements

PMD Java Source Code Scanner (http://pmd.sourceforge.net/pmd-5.0.2/meaning.html)

DP Digital Preservation

DSO Domain-specific ontologies

IERM the Intelligent Enterprise Risk Management Module

OAIS Open Archival Information System

QA Quality Assurance

QC

UrhG

Rz

ABGB

ASP

IP

IPR

BGBI

BGH

Qualitas Corpus1

German: Urheberrechtsgesetz; translation: copyright law

German: Randzahl; translation: margin note

German: Allgemeines bürgerliches Gesetzbuch; translation: Civil Code of Austria

Application Service Provider

Intellectual Property

Intellectual Property Right

German: Bundesgesetzblatt; translation: Federal Law Gazette

German: Bundesgerichtshof; translation: Federal Court of Justice of Germany

SLA Service Level Agreement

SOA Service Oriented Architecture

SW Software

VM

atIO

gInsO

Virtual machine

German: österreichische Insolvenzordnung; translation: Austrian Insolvency Act

German: deutsche Insolvenzordnung; translation: German Insolvency Act

WP Work Package

1
 http://qualitascorpus.com

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 10

Copyright TIMBUS Consortium 2011 - 2013

1 Executive Summary

The focus in the area of Digital Preservation (DP) so far has been predominantly on static objects, such as

data sets, documents and media. However, there is an increasing demand on preserving whole processes,

e.g. scientific workflows and critical business processes for the long term. The TIMBUS research project aims

at providing a methodology, guidelines and tools to preserve processes. The first part of this report presents

the TIMBUS process framework that is used to digitally preserve a business process. The framework defines

the required processes and actions needed for planning, for executing the preservation, and for redeploying

a process in a new environment at some point in the future. The TIMBUS process framework is domain

independent and can be adjusted and applied to different scenarios. The framework describes the

information flow between the steps of the TIMBUS preservation process, provides recommendation for

potential methods and tools needed for performing the preservation, and defines responsibilities of the

involved stakeholders. The framework guides the implementation of a preservation solution for a business

process. The TIMBUS process consists of three phases: plan, preserve and redeploy. TIMBUS adopts a risk

management approach that considers Digital Preservation as a risk mitigation strategy on an enterprise wide

perspective for business processes. In TIMBUS, Digital Preservation is used to make a business process,

including data, procedures, used services, infrastructure, legal and organisational aspects available and

useable in the long run. This deliverable specifies the supporting services for the processes in accordance

with the TIMBUS architecture. Examples of practical implementation and adoption are presented by using

the TIMBUS use cases.

Business processes are an orchestration of activities to achieve a specific goal. The activities are supported

by various services that are provided by different systems including customised software or external services

such as web services. In order to preserve the functionality of the business processes, the problem of how to

make external services available in the future needs to be solved. A similar problem is faced in the case of

commercial or customised software that is available at the customer, but only in the shape of object code. In

case the developer is not available in the future (e.g. due to bankruptcy), the object code remains with the

user but he has no handle on demanding the source code for further adjustments or new requirements. The

second part of this deliverable thus describes Holistic Software Escrow methods, which ensure the access to

deposited material for example source code under specific circumstances. It provides a potential solution to

maintain external dependencies for long term preservation while providing additional protection of

investments. We present a process to plan and execute an escrow agreement addressing technical as well as

legal aspects of the procedure. From the legal point of view, the escrow contract specifies the obligations of

the involved parties including notification, information, release and deposit conditions. From the technical

perspective, the selection of the material to be deposited and the quality evaluation of the material are

critical parts of the process to ensure usability in the future. The TIMBUS Technical Framework for Software

Escrow was developed to support the verification process of Software Escrow. It implements measurements

facilitating the assessment of the quality of software artefacts with focus on Software Escrow specific

concerns. The software prototype is implemented as an extensible framework based on a plug-in

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 11

Copyright TIMBUS Consortium 2011 - 2013

infrastructure. It that can be extended and adjusted for the specific requirements defined in the escrow

agreement. The feasibility of the different plug-ins has been tested with experiments using different

software projects. Existing software quality metrics as well as newly adopted measurements were used for

the experiments. The results show that the Software Escrow verification process can be supported by

providing software quality measurements and highlighting software artefacts or sections of potential

interest for further manual reviews.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 12

Copyright TIMBUS Consortium 2011 - 2013

2 Introduction

Digital Preservation is the management of digitally information over the time. While the research on Digital

Preservation traditionally followed a data centric view of information, the long term preservation of complex

systems and processes received less attention. Currently there is an increasing interest in the preservation of

complete processes over time, going beyond the preservation of data. The TIMBUS project aims at providing

methodology, guidelines and tools to capture, document, and preserve processes for the long term. This

deliverable presents the TIMBUS process framework that describes the process steps of the three phases

TIMBUS approach: plan, preserve, and redeploy. This document further describes Software Escrow as a

potential preservation solution for dependencies to external business partners.

Business processes are an orchestration of activities to achieve a specific goal. The preservation of such as

process requires sufficient details of the process and the context it is embedded in. This context is needed in

order to redeploy the process with its original behaviour in the future. Moreover, detailed planning and

testing of potential preservation strategies and controlled execution of the required preservation actions is

needed for a correct redeployment of the process in the future. Process preservation needs to address the

different layers of a process, including business, application, and technology layer. The relevant context of

the process has to be captured including technologies both on hardware and software levels, dependencies

between these components, the use of services operated by external providers, data, and the high-level

concepts of the business layer. The business layers address organisational aspects of the process including its

business logic, the involved stakeholders and legal obligations. Business processes are supported or

implemented by various services that may be provided by different systems. The services can be provided by

external service operators. As these services are beyond direct access, it is not easy to capture and preserve

them. In the long run, the availability of current technology and services cannot be guaranteed, especially if

they are provided by third parties. The functionality of business processes can be threatened by missing

software services or obsolete technology. Legal concerns constitute further threats such as non-compliance

with contracts, licences, or SLAs (Service Level Agreements). Moreover, domain specific laws and regulations

such as data protection set requirements and obligation for a preservation solution.

The presented TIMBUS framework guides organisations through the three phases of the TIMBUS

preservation approach. The approach is driven from an enterprise risk management perspective. Digital

Preservation is a potential risk mitigation strategy derived from the threat of potential loss of availability of

information over time. Risk management is used to identify and evaluate different risks associated with

business processes in a structured and well defined manner. Different preservation alternatives to preserve

an adequate set of information have to be identified and evaluated. Within the planning phase, the context

of the process is captured, including all relevant aspects that are needed for preservation and redeployment.

A preservation plan is created defining relevant actions that need to be executed for extracting the relevant

process data from the productive environment, and subsequently preserving and archiving the process for

the long term. The relevant components implementing and documenting the significant properties of the

process need to be identified and maintained over time. Processes may not be limited to a single system but

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 13

Copyright TIMBUS Consortium 2011 - 2013

often make use of distributed services across platforms that need to be identified and captured for

preservation. The used components need to be described and preserved for future use. Based on cost-risk

considerations, suitable preservation strategies are selected. The preservation phase executes the

preservation strategies and prepares the process for long term archiving. The redeployment of the business

process defines the re-execution of the preserved process in a new environment at some point in the future.

This redeployed process needs to be verified for its authenticity and correctness. An evaluation is required to

compare the significant properties of the redeployed process with reference values of the original process.

The TIMBUS framework provides guidance through the process with references to implementations and

related work. The TIMBUS process describes the required actions that need to be performed and the

expected outcome. Responsibilities on the process level are defined and involved stakeholders are specified.

The framework we developed is not limited to a single use-case but provides the flexibility to be applied in

various settings considering the specific requirements and implementation. The TIMBUS framework needs to

be instantiated and adapted with respect to specific requirements of the business process to be preserved.

Examples for implementations are shown in this deliverable by using the TIMBUS use cases. The presented

framework describes the theoretic principles for the preservation process. The architectural support for the

processes by the TIMBUS architecture is identified and presented in this deliverable. Tool support for the

architecture is developed as part of WP6 within the TIMBUS project providing implementations for the

process steps.

The use of external services within a business process presents a significant challenge for the long term

preservation. Limited or no access to the implementation leaves the services vulnerable to obsolescence and

in worst case disappearance over time, which promotes dependencies on external vendors. Escrow provides

a business model to ensure access to a third party implementation under specific circumstances. This

deliverable thus introduces Holistic Software Escrow, a concept for setting up escrow agreements for third

party software with a special focus on technical and legal aspects. Software can be essential for business

processes in companies providing critical services to deliver products and services. In many cases the

software solutions are custom made and delivered by external vendors. It is a common practice in software

vendors to deliver only the binary code of the software to the customer, as the maintenance and adaption of

the software is also provided by the vendor as part of his business model. This dependency becomes critical

for the customer in particular when the vendor stops the maintenance of the software system or goes out of

business. Without access to the implementation of the software, further development or adoption of the

software for new requirements is hardly possible. In order to prevent such situations a Software Escrow

agreement can be established. Within such an agreement, the implementation of the software project is

deposited with an independent software escrow agent. When predefined events occur, such as bankruptcy

of the vendor, the deposited material is released to the customer. This deliverable guides through the

process of Software Escrow, examining technical and legal aspects of the agreement. The presented Holistic

Software Escrow extends the scope of existing approaches. So far only the source code was deposited

including a wide range of relevant software project artefacts e.g. including documentation and design

documents. A key challenge of the procedure is the verification of the deposited material to check whether it

can actually be used in the future. A technical framework is introduced in this deliverable to support the

semi-automated evaluation of deposited software projects regarding completeness and sufficient quality of

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 14

Copyright TIMBUS Consortium 2011 - 2013

the artefacts. The aim of the framework is to decrease the time and cost of the evaluation of deposited

software artefacts by decreasing the need for manual tasks to be carried out by experts. The framework

combines a number of existing and adopted quality metrics to identify elements that need further manual

review. A set of software projects has been used to test the feasibility of the framework, and the significance

of different quality metrics. The principles of Software Escrow can be applied to any third party software

service, e.g. external web services. It provides a practical solution to overcome external dependencies for the

long term preservation.

The remainder of this document is structured as follows. Section 3 presents the TIMBUS process framework.

In Section 3.3 the fundamental concepts of the framework are specified such as stakeholders, artefacts and

environments. The processes to digitally preserve a business process are described in Section 3.4 describing

the process steps of the three phases. The architectural view of the process framework is shown in Section

3.5 where the support of the TIMBUS architecture is described. The application of the framework on the

TIMBUS use cases is presented in Section 3.6 for the Civil Engineering and the e-Health use case. The process

description ends with a summary in Section 3.7. Holistic Software Escrow is discussed in Section 4. The

escrow procedure is grouped into three phases, each section discussing the technical and legal, respectively

contractual aspects of each phase. The Technical Framework presented in Section 4.3.3 discusses the

components needed for a holistic evaluation with focus on maintainability. An introduction of the prototype

implementation is given in Section 4.6, followed by the experiments executed by using different software

projects. In Section 4.7 we provide conclusions on the proposed the Holistic Software Escrow. Section 5

provides a summary of this deliverable and provides an outlook of future work within the TIMBUS project.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 15

Copyright TIMBUS Consortium 2011 - 2013

3 TIMBUS Digital Preservation Process Framework

3.1 Introduction

The TIMBUS Digital Preservation Framework defines the process to digital preserve a business process (BP).

It describes the three phases of the preservation: planning, preserve and redeploy. The framework describes

the process steps of each phase specifying input, output, methods and responsibilities. It should guide

organisations through the process of preserving business processes. The framework is domain independent

and can be applied to different settings. It can be adjusted for the specific needs and requirements of a

setting. For the process steps of the framework, methods and specific responsibilities of involved

stakeholders are suggested. The instantiation of the framework needs to be done for specific settings

depending on the implementation of the process, requirements, obligations and involved actors. The wide

range of processes that are supported by the framework allow for a flexible implementation of the process

steps. It provides a clear specification of required actions and information for preservation and

redeployment of a business process, but is flexible enough to be adjusted according to be requirements of

specific settings.

The framework was designed by taking into account the use case scenarios such as the civil engineering use

case LNEC [1] and the former use case of scientific experiments [2] as a reference points. Moreover the

TIMBUS framework was influenced by a number of other models, procedures and frameworks in the area of

the Digital Preservation and other related disciplines. A variety of related work has been considered for the

TIMBUS DP Process Framework, starting from the fundamental concepts of OAIS [3] and risk management

[4] to the work of former DP research projects such as CASPAR2, SHARMAN3 and PLANETS4 ranging to work

of information security, verification and authentication [5]. Due to the wide range of different business

processes and implementation that are supported by the framework, it defines the basic concepts and

methods for the three phases of the TIMBUS approach.

The remainder of this section is structured as follows. Chapter 3.2 introduces related work of the process

framework for Digital Preservation of business processes including process modelling techniques and related

work in Digital Preservation and other disciplines. Section 3.3 describes the preservation process, starting

with the definition of the fundamental concepts such as stakeholders, artifices and environments. The

involved processes of three phases of the TIMBUS framework are shown in Section 3.4.2 for planning,

Section 3.4.3 for preservation and Section 3.4.4 for redeployment. The monitoring and evaluation process

for the business process is described in Section 3.4.5. Section 3.5 provides an architectural view of the

process that identifies the support by the TIMBUS architecture [6]. Section 3.6 completes the process

description with use case specific examples of the TIMBUS framework.

2
 http://www.casparpreserves.eu/

3
 http://shaman-ip.eu/

4
 http://www.planets-project.eu/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 16

Copyright TIMBUS Consortium 2011 - 2013

3.2 Related work

This section points to related work of the TIMBUS process framework in the area of Digital Preservation and

related disciplines. The methods used for process and architecture modelling (BPMN and Archimate) in this

deliverable are introduced in this section.

3.2.1 BPMN 2.0

The Business Process Model and Notation (BPMN) specification was created by the Business Process

Modelling Initiative and published in 2004. The model was then adopted by the Object Management Group,

with version 2.0 being the latest update [7]. BPMN provides for all stakeholders an intuitive notation while

being able to represent complex processes. Thus it builds a bridge across the gap between different business

stakeholders, from business analysts to developers and managers. Business process operations are visualized

by Business Process Diagrams (BPD). A list of frequently used symbols can be found in the Figure 1 below. A

complete overview of BPMN symbols and diagrams is available online5. BPMN is used for the graphical

representation of the TIMBUS processes in this document.

Symbol Description Symbol Description

Task / Activity

Start Event

Loop Task

The task is repeated.

Start Message Event

Receiving messages

and triggering the

Event

Sequence Flow

shows the order in which

activities in a process

will be executed

End Event

Message flow

Sending and receiving a

message between flow

participants

Gateway (decision)

Figure 1: BPMN 2.0 symbols

5
 E.g. http://www.bpmb.de/images/BPMN2_0_Poster_EN.pdf

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 17

Copyright TIMBUS Consortium 2011 - 2013

3.2.2 ArchiMate

ArchiMate is a domain-independent modelling language for enterprise architecture and provides tools to

describe, analyse, and visualize relationships within and across business domains. As a The Open Group6

standard, ArchiMate has been widely adopted for real-world use in the commercial and educational sectors,

based on practical experience of many years. It fully aligns with the TOGAF standard [8]. Thus, results from

The Open Group forums and work groups in this domain are directly incorporated. Therefore ArchiMate

follows the terms provided by the TOGAF standard instead of defining its own terms. TOGAF is a framework

that enables developing enterprise architectures. More information on ArchiMate can be found in

Deliverable 4.9 [9]. ArchiMate is used to show the architectural view of the TIMBUS processes with the

support of the TIMBUS architecture in Section 3.5.

3.2.3 TIMBUS methods, tools and architecture

3.2.3.1 Context model

The TIMBUS context model [10] [11] provides a framework to systematically model relevant context

parameters and dependencies. It is sufficiently comprehensive in order to address different Digital

Preservation relevant parameters of the business process context. The goal of the context model is to

capture all aspects of a business process that are relevant for risk management, preservation planning,

preservation, archival storage and redeployment. It is implemented as ontology. The model consists of a

domain-independent structure that represents the core concepts, which are aligned with the ArchiMate

concepts. The context model can be extended by domain specific ontologies (DSO) in order to capture

concerns that are of particular relevance to a specific domain. The TIMBUS context model already defines a

set of such domain specific ontologies that serve as a reference implementation.

3.2.3.2 TIMBUS architecture

The TIMBUS architecture represents the complete solution for performing preservation of modern business

processes. An overview about the main components is show in Figure 2. Its goal is to provide a

comprehensive architecture to cover the various aspects and requirements for the long-term preservation of

complex digital objects such as different data types, entire business processes and the execution

environment they run in. A detailed description on the TIMBUS architecture can be found in [6]. The support

of the TIMBUS processes designed in this deliverable and the TIMBUS architecture are presented in Section

3.5.

6
 http://www.opengroup.org/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 18

Copyright TIMBUS Consortium 2011 - 2013

3.2.4 Digital Preservation

Although Digital Preservation has been traditionally driven by memory institutions and the cultural heritage

sector, it is increasingly recognized that it is a problem affecting all organizations that manage information

over time, and as such it affects most of contemporary organizations where information systems provide

important support to the business. Although the OAIS Reference Model [3] remains an important source of

concepts to the field, it lacks directives and guidelines to address complex preservation scenarios with

multiple business support systems and complex digital objects in place. In such scenarios, Digital

Preservation requires a holistic view, acting as a combination of organisational and business aspects with

system and technological aspects, so that all the contextual aspects surrounding a complex digital object can

be captured and the objective of rendering it in the future in the same or in similar conditions can be

attained.

With this holistic concern in mind, digital information life cycle models have been designed, among which

the DCC Curation Life Cycle Model [12] and the SHAMAN Information Life Cycle [13] are noticeable

examples. The DCC Curation Life Cycle Model elongates the traditional scope of preservation to include

curation. It addresses two phases: a Curation phase, which might involve the creation of new information or

Figure 2: High level view of the TIMBUS DP architecture

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 19

Copyright TIMBUS Consortium 2011 - 2013

the access and reuse of already existing information and its appraisal and selection; and a Preservation

phase, which involves the ingestion of the information into the archive, the application of preservation

actions, and the storing of that information. During the two phases, community watch and participation and

preservation planning take place in order to keep descriptive metadata and representation information up to

date. The SHAMAN Information Life Cycle, besides including the Archival phase already addressed by the

OAIS model, suggests two additional pre-ingest phases and two additional post-access phases. The pre-

ingest phases Production and Assembly aim at the capturing of the context of production of the object and

its assembly into an information package, respectively. The production and the assembly are important

aspects for business processes and are part of the planning phase in the TIMBUS process framework. The

post-access phases Adoption and Use of the SHAMAN Information Life Cycle concern the preparation of the

retrieved package so that its information contents can be used. The access to an archived business process is

realised as redeployment phase in the TIMBUS framework.

The Preservation Networks [14] of the CASPAR project are a relevant reference for the capturing of the

dependencies of complex digital objects through the usage of entity-relationship-like models, although

business and organisational aspects are left out of it. The TIMBUS context model captures the context

including the dependencies and relationships of business processes. It is extensible for domain specific

needs.

The processes defined in the framework can be implemented and supported by a range of existing work in

the area of Digital Preservation. The research on preservation strategies has predominantly focused on

migration and emulation. Migration involves the converting of objects to operate in a different technical

environment (in terms of hardware and software) than originally intended [15]. Research on migration can

be found within the SCAPE project7, which evaluated 40 migration tools, ranging from image converters to

database migration suites, of which the ones considered most adequate for SCAPE’s large scale

requirements were chosen [16]. Emulation is a widely used concept in information technology. For software

engineering it is often used as development aid if the system architectures for development and application

of the software differ (e.g. software for hand-held systems is usually tested in an emulated environment).

With emulation it becomes possible to run legacy software in production environments [17] [18] [19]. Both

strategies can be used to preserve parts of the information system supporting a business process, but new

approaches need to be envisaged to address problems of external dependencies such as web services. A

discussion about potential strategies is given in Section 3.4.2.4.2. Work on the evaluation of preservation

strategies with focus on static data objects has been done with the PLANETS8 and SCAPE project. The

resulting preservation planning tool is called Plato, a publicly available web-based decision support tool with

access to a distributed architecture of preservation services [20].

7
 http://www.scape-project.eu/

8
 http://www.planets-project.eu/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 20

Copyright TIMBUS Consortium 2011 - 2013

The on-going research project wf4ever9 addresses approaches to publish and share scientific workflows by

resolving execution platform dependencies. The aim of the project is to make the workflows preservable and

reusable. Their approach is to create an abstract representation of the workflow that is represented in Open

Provenance Model (OPM) [21] as Linked Data10. The project shows a practical approach to abstract and

describes scientific workflows so that they can be easily shared across organisations. Nevertheless, the

abstraction approach introduces some limitations for the preservation of significant properties that are not

represented by the abstraction layer. For business processes a more comprehensive approach is required

taking into account the context of a process including legal aspects as well as hardware specific properties

e.g. the use of specific sensor hardware.

3.3 TIMBUS process framework

This section introduces the fundamental concepts of the TIMBUS process framework. The three-phase

TIMBUS approach is introduced in Section 3.3.1. The involved stakeholders are described in Section 3.3.2.

Three different process scenarios are considered in the framework as described in 3.3.3. This section further

defines core artefacts of the preservation possess and environments of the process.

9
 http://www.wf4ever-project.org/

10
 http://linkeddata.org/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 21

Copyright TIMBUS Consortium 2011 - 2013

3.3.1 TIMBUS approach

The TIMBUS approach to digitally preserve business processes can be divided into three phases: plan,

preserve and redeploy (as shown in Figure 3). Digital Preservation is seen from a risk management

perspective within the TIMBUS project. In the planning phase, a risk assessment of existing business

processes is performed, the context of the process is captured and potential preservation solutions are

evaluated. The preservation phase executes the preservation strategy based on the capturing of the business

process and context from source systems and its preparation for archival storage. The last phase –

redeployment – retrieves the process from the archive at some time in the future and redeploys it for re-

execution.

Planning

In TIMBUS, the preservation of business processes is based on a risk management approach. In the planning

phase a risk analysis of existing business processes is performed. The risk analysis is done on different levels

within the organisation, starting from an enterprise wide identification of business processes critical in the

future, supported by reviewing contractual and legal obligations, drilling down to detailed analysis of

technical risks of current implementations. The risks that jeopardize the long term availability of business

processes are identified and evaluated. For a detailed analysis of business process, the relevant components

 Figure 3: TIMBUS Three phase approach

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 22

Copyright TIMBUS Consortium 2011 - 2013

and dependencies are captured in the TIMBUS context model [22] [10] [11]. The model defines technical,

organisational and legal aspects of a process. The legal and contractual aspects of a business process can be

administered by the legality lifecycle management tool [23] provided by TIMBUS.

Potential preservation approaches for the business process are identified and evaluated against the specific

requirements of the settings. The preservation includes the capturing of required process data from the

source environment, application of preservation actions and migration of the process data into an archival

format.

Within our risk management approach, Digital Preservation is considered as one possible risk mitigation

strategy. The risk management is responsible for continuous monitoring of risk factors for active business

processes as well as for archived business processes.

Preservation

In the preservation phase, the business process is captured from the source system. In order to ingest a

business process into the archive, preservation actions have to be applied. Such actions are for instance

emulation of external software or hardware, migration of data or the virtualisation of systems. The

dependencies and relationships between the components of the business process need to remain intact over

time. In order to verify the characteristics, behaviour and performance of the captured process in the future,

validation data is captured. These will become useful whenever the process has to be redeployed. They are

important for testing the success of the redeployment. Also monitoring parameters are specified and stored

together with the process data in the archive.

Redeployment

The redeployment phase defines the reactivation of the preserved business process in a new environment at

some time in the future. The redeployment procedure needs to be adjusted to the new environment. The

required services need to be redeployed on a new (hardware and software) infrastructure and the process

needs to be deployed. The access and usage of the redeployed services and retrieved data need to be

adjusted to the new organisational structures and legal conditions. Then, the redeployed business process is

validated against the metrics that have been defined by the original process.

3.3.2 Stakeholders

Different stakeholders, having different concerns regarding the preservation of the business process, are

involved in the preservation process. Table 1 lists these stakeholders and provides a definition of their

concerns. The stakeholder identification was driven by consolidating common role models of business

processes, preservation models and identified concerns of the TIMBUS process steps. Furthermore, the

TIMBUS use cases were used to verify the stakeholder definition. These concerns need to be realized by

actors in the organisation - there has to be a mapping between the TIMBUS stakeholders and actors in the

organisation, although this might not be a 1:1 relation. In order to ensure that all relevant concerns for the

preservation are considered in the process, the relevant actors should be identified. Depending on the

process and the structure of the organisation, stakeholders can be represented by several actors. An

example of the stakeholder match can be found in Section 3.6.1 for the civil engineering use case.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 23

Copyright TIMBUS Consortium 2011 - 2013

Table 1: Stakeholders

Process Owner The Process Owner has interest in the preservation of the business process.

He is responsible for the business process, business data and the business

rules.

Process Operator The Process Operator performs the work necessary to archive the objectives

of the business process. The operator represents the customer reusing the

preserved process in the future.

Technology Manager The Technology Manager is responsible for the technological system

continuity and the deployment of technological infrastructure of the

institution.

Technology Operator The Technology Operator is responsible for the operation of the IT services

and infrastructure archiving service level agreements.

Preservation Manager The preservation manager (also repository manager) controls the long term

preservation and retrieval of digital assets in the institution, defines strategies

and sets goals for preservation in the organisation.

Preservation Operator The Preservation Operator is responsible for the operation of the preservation

and redeployment process, and the archive.

Executive Manager The Executive Manager’s responsibilities constitute the strategic decision

making on an organization level. The Executive Manager creates the

enterprise-wide business plans and associated resourcing plans.

Operational Manager The Operational Manager is responsible for the operational decisions in the

day-to-day business. The role is responsible to manage the resources

(including budget) and processes in the organisation.

Risk Manager The Risk Manager identifies, assesses, and risks. This includes analysing the

value of assets to the business, identifying threats to those assets, and

evaluating how vulnerable each asset is to those threats. The Risk Manager

can be further specified as described in [24].

Legal Expert The Legal Expert is responsible for the legal and contractually issues of the

business process.

Auditor (external) The auditor is responsible for certifying that the organization practices, the

system’s properties and the operational environment comply with established

standards and regulations.

Regulator (external) The regulator is an external entity imposing rules concerning the preservation

of digital assets, such as legislation and standards. Example is the government

enacting data protection regulations.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 24

Copyright TIMBUS Consortium 2011 - 2013

3.3.3 Process scenarios

In the preservation of business processes we are facing different scenarios depending on the

implementation of the system and the requirements of the setting. Three different types of scenarios can be

identified within TIMBUS: deployed, automated and orchestrated.

 In a deployed scenario, the processes run partially supported by information systems, and while it is

possible to capture some of the software (SW) components and configuration data, it is not possible

to capture all relevant information, such as the system state, or instances of the process.

 In an automated scenario, the processes run completely supported by information systems, and

while it is possible to capture the SW components, configuration data, and other relevant data (e.g.

system state), it is not possible to capture single executions (instances) of the process. This scenario

is similar to the hibernate function existing in several information systems.

 In an orchestrated scenario singe executions of the process are identified and stored. Besides the

possibility to capture SW components and configuration data, it is also possible to capture instances

of the process (which dismisses the need for capturing the whole system state).

Table 2: Process scenarios

3.3.4 Artefacts

Different artefacts are used, processed, generated and exchanged by the different process steps within the

TIMBUS framework. The core artefacts are listed and described in Table 3.

Table 3: Artefacts

Processes SW Components Config Data System State Single instance

Deployed X X

Automated X X X

Orchestrated X X X

Abbreviation Artefact Description

RAR Risk Assessment Report RAR is the result of the Risk Assessment Manage-

ment process (as described in Section 3.4.2.1 and

[25] [24]). It evaluates the risks of a specific business

process setting according to their expected likeli-

hood and impact.

CMI Context model instance CMI specified the context of a specific business

process including technical, organisational and

legal aspects. The context model is described

and specified in [22].

PPP Process Preservation Plan The Process Preservation Plan (PPP) specifies

actions to digitally preserve a business process.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 25

Copyright TIMBUS Consortium 2011 - 2013

3.3.5 Environments

The TIMBUS process interacts with two different environments listed in Table 4 (as defined in the TIMBUS

architecture [6]).

Table 4: Environments

It includes

 A specification of the significant proper-

ties of the process,

 methods to acquire the relevant data

from the source system,

 preservation actions for the compo-

nents of the business process

 validation and verification mechanisms

including measurement points and data

 archival storage format for the business

process

 redeployment procedure

 evaluation of the plan against the

preservation requirements

 monitoring events for review of the

preservation plan.

V&V Plan Validation and Verification

Plan

The V&V plan specifies the validation and verifi-

cation procedure for the preserved and rede-

ployed business process. The Goal of the V&V

Plan is to provide measurements to check

whether the significant properties of the pro-

cess were preserved over time.

Environment Description

Source

environment

Execution environment of the original business process that will be pre-

served. The environment includes technical as well as non-technical re-

sources (e.g. organisational aspects, legal aspects).

Redeployment

environment

The target environment which is the combination of technical and non-

technical resources forming an infrastructure to re-deploy the preserved

business process.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 26

Copyright TIMBUS Consortium 2011 - 2013

3.4 Digital Preservation Process for Business Processes

Figure 4: TIMBUS Process High Level View

Figure 4 shows the high level processes of the TIMBUS framework. The preservation of the business process

is seen from risk management perspective. The TIMBUS process can be divided into three phases: plan,

preserve and redeploy.

In the first phase the risk management performs a risk analysis of existing business processes including an

assessment of processes that need to be accessible in the future. In order to assess the risks of a process the

context and the dependencies of the business process are captured and modelled (Acquisition business

process context). For processes with potential risks of becoming unavailable in the future potential

preservation strategies are identified and evaluated (Assessment Preservation Approaches). This includes

processes with external components and those which are beyond the influence of the process owner.

For risk mitigation, the most suitable preservation strategy, depending on the individual requirements is

selected. The execution of the preservation strategies and transformation of the business process into an

archival format is done in the Preserve process. The Redeployment process reactivates the archived business

process in a new environment at some time in the future.

In the following sections, the process steps of the three phases are described in more detail. An overview of

the detailed TIMBUS process framework is given in Figure 5 showing the process steps of all three phases.

The figure shows that all processes of the TIMBUS framework are triggered by the Risk Management

(described in Section 3.4.2.1). The planning phase consists of the Acquisition business process context

(described in detail in Section 3.4.2.2) and Assessment Preservation Approaches (see Section 3.4.2.3). The

process steps of the preservation phases are presented in Section 3.4.3. The redeployment process is

described in Section 3.4.4. For a better overview tables summarise the process steps with key information.

For all steps the inputs and outputs are defined in the table. The support for each process step by the

TIMBUS architecture [6] is presented as well. An overview of the architectural view of the TIMBUS process is

given in Section 3.5 of this document. The stakeholders (as defined in Section 3.3.2) involved in the process

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 27

Copyright TIMBUS Consortium 2011 - 2013

are defined by using the RACI method. RACI11 describes the participation of roles in completing task or

processes. An overview about the assignment is given in Section 3.4.1. A short description of all process

steps is given in the table.

Process

Risk

Management

Input Source environment, expert input, business goals, regulations

Output Risk Assessment Report (RAR): Identified risks, evaluated risks, risk

mitigation strategies, triggers for re-evaluation of risks

TIMBUS

Architecture
IERM Module

Stakeholder

involved

R,A: Risk manger

I: Execute Manager

C: Process Owner, Technology Manager, Preservation Manager, Operational

Manager, Legal Expert, Auditor, Regulator

Description The risk management is a central component of the TIMBUS process. It is

responsible to identify, analyse and evaluate risks. Starting from ISO 31000

[4] as a generic risk management approach the TIMBUS framework

integrates Digital Preservation within risk management. The risk

management compares different risk mitigation strategies and supervises

the execution of risk mitigation strategies. The monitoring of risks is an on-

going activity for the archived business process and running business

process. It can re-invoke the risk analysis and evaluation process.

Acquisition

business

process

context

Input Source environment, process documentation

Output Context model Instance of the business process with different views of the

stakeholders (CMI)

TIMBUS

Architecture

DP Agent Module, DP Acquisition Module, Legal Life-Cycle Module,

Preservation Exert Suite

Stakeholder

involved

R: Preservation Operator

A: Preservation Manager

C: all stakeholders

I: Risk Manager

Description The context of a business process is captured and documented. The context

includes technical, organisational and legal aspects of a process. Different

views of the context are developed for specific concerns of the

stakeholders.

Assessment
Input RAR, CMI

Output Process Preservation Plans (PPP): including list of potential preservation

11

 RACI: R-Responsible, A- Accountable, C-Consulted, I-Informed

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 28

Copyright TIMBUS Consortium 2011 - 2013

Preservation

Approaches

strategies evaluated against identified requirements

TIMBUS

Architecture
Preservation Expert Suite, DP Engine Module

Stakeholder

involved

R,A: Preservation Manager

C: Process Owner, Process Operator, Technology Manager, Operational

Manager and Legal Expert

I: Risk Manager

Description Potential preservation strategies for the business process are identified and

evaluated against the preservation requirements. That includes procedures

for capturing the process from the source system, applying required

preservation actions, and the migration into the archival format. The

resulting Process Preservation Plan also includes procedures for

redeployment and validation of the preserved process.

Preserve
Input Process Preservation Plans (PPP)

Output Business process stored in the archive (with performed preservation action,

additional metadata, procedure for redeployment and verification) and

monitoring triggers for re-evaluation of DP strategy.

TIMBUS

Architecture

DP Agent Module, Preservation Expert Suite, DP Engine Module,

Preservation Repository, Risk Management

Stakeholder

involved

R: Preservation Operator

A: Preservation Manager

C: Technology Operator, Operational Manager

I: Process Owner, Risk Manager

Description In this step data of the business process is captured from the source

environment and prepared for archival storage. The required preservation

actions defined in the Process Preservation Plan are executed. Quality

assurance ensures the correct output of the performed actions. Verification

data used during a later redeployment is captured. The business process is

stored in the archived and monitor triggers for re-evaluation are submitted

to risk management.

Redeployment
Input business process stored in archive

Output Redeployed business process in new execution environment

TIMBUS

Architecture

DP Acquisition Module, Preservation Expert Suite, DP Engine Module,

Preservation Repository

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

C: Risk Manager

I: Process Owner

Description In this step the archived process is redeployed in a new environment. The

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 29

Copyright TIMBUS Consortium 2011 - 2013

redeployment procedure is adapted to the redeployment environment. The

preserved services and data need are installed. The redeploy process needs

to be verified for correctness and completeness.

3.4.1 RACI – Responsibility assignment

The Responsibility Assignment Matrix also known as RACI allows to assign responsibilities of roles for

processes. Table 5 shows the responsibilities of the roles for the high level processes of the TIMBUS

framework (shown in Figure 4). The table shows that the preservation process requires a number of

consulting roles that not executing tasks but contributing expertise and input. The Process Operator,

Technology Manager, Technology Operator, Operational Manager, Legal Expert, Auditor and Regulator are

consulting roles. Executive roles are the Preservation Manager, Preservation Operator and the Risk Manager

who execute tasks of the TIMBUS process. Figure 5 shows the accountable roles for the process steps of the

TIMBUS framework. The table shows that the Process Owner, Preservation Manager and the Legal Expert

are involved in all phases of the process.

Table 5: RACI

Risk Manage-

ment

Acquisition

business pro-

cess context

Assessment

of DP
Preserve Redeployment

Process Owner C C C I I

Process Operator C C

Technology Manager C C C

Technology Operator C C C

Preservation Manager C A RA A A

Preservation Operator R R R

Executive Manager I C

 Operational Manager C C C C

Risk Manager RA I I I C

Legal Expert C C C C

Auditor C C C

Regulator C C C C

R Responsible The person executing the task.

A Accountable The person accountable for signing off the work done by the responsible

person.

C Consulted Persons that are consulted during the execution of the task. They are not

executing the task but hold information that are required.

I Informed Those who are updated on the progress of the task.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 30

Copyright TIMBUS Consortium 2011 - 2013

Figure 5: Detailed TIMBUS Process

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 31

Copyright TIMBUS Consortium 2011 - 2013

3.4.2 Planning

The first phase of the three-phase TIMBUS process is responsible for planning the preservation. Within the

planning phase the business process in the institution is acquired. In order to preserve and later redeploy the

process, the context needs to be captured and documented (e.g. technical, legal and organisational aspects).

Suitable preservation strategies for the process are identified and evaluated in this phase. Figure 4 shows the

high level view of the TIMBUS process, the planning phase consists of two steps: Acquisition business process

context and Assessment Preservation Approaches.

The TIMBUS approach is risk management based. Risk management is a continuous process and interacts

with all three phases of the TIMBUS process (as shown in Figure 6). Section 3.4.2.1 presents the core

concepts of risk management. A more detailed description of the TIMBUS risk management can be found in

[25] .

3.4.2.1 Risk Management

A risk can be characterized as the combination of the probability of an event taking place and its

consequences [26]. Risk management is a well-established field with the goal of recognizing, preventing and

controlling risks related with assets and activities. It is a common practice in managing organizations and

projects, offering standardized methods for qualifying, quantifying and assessing risks, and deliver risk

treatment. Digital Preservation is a possible mitigation strategy to treat risks affecting the long term

Figure 6: TIMBUS process

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 32

Copyright TIMBUS Consortium 2011 - 2013

availability and usability of business processes. The selection of a suitable risk treatment requires

comparable evaluation of potential strategies under consideration of economic aspects.

TIMBUS uses a generic enterprise risk management process based on the ISO 31000 [4]. A detailed

description about risk management within TIMBUS can be found in [25]. TIMBUS defines different

procedural interfaces to connect Digital Preservation with enterprise risk management. The risk associated

with a process can act as a driver prompting its preservation as a way of mitigating the threats that endanger

the process. The risk management process identifies and evaluates different risks in a structured and well

defined manner by determining the potential impact and likelihood of the risk. An example of the risk

management process applied in TIMBUS can be found in [27] for the civil engineering use case and in [28] for

the scientific process.

Figure 6 shows the process steps of risk management and the interface to the TIMBUS process. In a first step

the context of the business process is established. The Acquisition of the business process context process

(described in Section 3.4.2.3.1) supports the capturing. The result is a context model instance (CMI) of the

process. During the Risk Assessment risks associated with a process are identified by using CMI. Potential

preservation mitigation strategies are provided to the risk management by the Assessment of Preservation

Approaches process (see Section 3.4.2.2). The enterprise risk management process then decides on the best

matching solution. The risk management then triggers the preservation phase, which is described in 3.4.3.

The redeployment of preserved processes represents also a potential risk mitigation strategy. Examples are

compliance of preserved processes with obligations and guidance or proofing process steps or process

instances of preserved process. The redeployment process (described in Section 3.4.4) can be triggered by

the risk treatment step as shown in Figure 6. The redeployment of a preserved process can also be triggered

outside the risk management by demand of other tasks and process in the organisiation.

Establish

Context

Input Source environment, business process documentation

Output CMI

TIMBUS

Architecture

The task is implemented within the TIMBUS project as Acquisition of the

business process context process (described in Section 3.4.2.3.1).

 Stakeholder

involved
 R,A: Risk Manager

 Description
In order to manage the risk of a business process, the context of the process

needs to be specified. The TIMBUS context systematically specifies aspects of

a process including technical, organisational and legal. The model instance

(CMI) describes the process and the related context and is further used for

the risk assessment.

Identify Risks Input CMI

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 33

Copyright TIMBUS Consortium 2011 - 2013

Output List of identified risks for the business process

TIMBUS

Architecture
Risk Model Builder

Stakeholder

involved

RA: Risk Manager

C: Process Owner, Technology Manager, Preservation Manager, Operational

Manager, Legal Expert, Auditor, Regulator

Description
In this step the risks of the business process are identified. Structured

approaches to identify the source of the risks, the impact area, events and

the potential consequences are used. Potential methods for the risk

identification are described in [24].

Analyse Risk Input List of identified risks

Output Report about likelihood and impact of identified risks

TIMBUS

Architecture
iERM Module: Risk Annotation

Stakeholder

involved
RA: Risk Manager

Description
In this step the identified risks are analysed according to their likelihoods and

impacts.

Evaluate Risk Input Report of analyse risk

Output RAR, PPP

TIMBUS

Architecture
Risk Impact Assessment

Stakeholder

involved

RA: Risk Manager

I: Executive Manager

Description
In this step the risks and potential mitigation strategies are evaluated.

Evaluation techniques are presented in [24]. The Assessment of Preservation

Approaches process provides input to the evaluation step of the risk

management. An important criterion for the evaluation are cost benefit

analyses. Cost considerations for DP are also discussed in [24]. The output of

this step is whether risks are acceptable/ tolerable or which risk treatments

are required to mitigate the risks.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 34

Copyright TIMBUS Consortium 2011 - 2013

Treat Risk Input PPP

Output Preserved business process in archive

TIMBUS

Architecture

Within TIMBUS the risk treatment is executed as preservation phase, which

is described in Section 3.4.3.

Stakeholder

involved

RA: Risk Manager

I: Executive Manager

Description
The risk treatment addresses the execution of risk mitigation strategies and

the evaluation of their effectiveness. The TIMBUS process considers Digital

Preservation as a risk mitigation strategy.

3.4.2.2 Acquisition of business process context

This task is responsible for acquiring the context of a business process. This process is triggered by the risk

management process as shown in Figure 6. The captured information is modelled as an instance of the

TIMBUS context model [10] [22]. The acquisition process is shown in Figure 7. The first step is to determine if

the business process is defined and specified in a sufficient way for further processing. If not, the refinement

of the business process specification is started. In many cases processes are vaguely defined, clear

specifications are often absent. Processes in the organisation are continuously changing and improving, as a

result the formal documentation is often out-dated. Business processes in organisations are strongly

connected and report to each other. For their preservation, thus, a clear specification of the boundaries is

required. The business process to be preserved is captured, specified and documented in this acquisition

process. For modelling and documenting business processes a wide range of frameworks are available, e.g.

BPMN [29] or ArchiMate [8], along with a number of tools supporting them. In cases where the process

Figure 7: Acquisition of business process context

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 35

Copyright TIMBUS Consortium 2011 - 2013

model is either not available or not up-to-date, experts are supported with techniques from the area of

process mining in order to retrieve a formal model of the process [30].

Once the business process is specified, the next step is to identify the stakeholders that have interest in the

preservation of the process. A list of stakeholders for the preservation of business processes is presented in

Section 3.3.2. The different stakeholders are interested in specific subsets of information about the process,

which are called concerns [31]. These concerns are captured and are useful information for identifying the

aspects that need to be captured from the business process. The identified concerns are used to create

different views of the business process and its context in the last step of the business process acquisition

process. A view represents the business process from a perspective of a set of concerns.

After the stakeholders and their concerns are identified, domain specific context information is gathered

from the source environment. The Acquisition of the business process context is executed twice during the

TIMBUS approach. As shown in Figure 6 the process is triggered once by the Risk Management and the

second time by the Assessment Preservation Approach process. The two iterations of the process address

different concerns of stakeholders. The context model instance of the first iteration is used to identify risks

and analyse risk of the business processes. The second iteration is used for the planning and assessment of

preservation approaches. An example of these different concerns is shown for the civil engineering use case

in Section 3.6.1.

The different aspects of the business process can be extracted in parallel. All relevant context information

that is required to address the concerns of the stakeholder is captured. Context information includes

amongst others organisational aspects such as actors involved, technical aspects such used technologies,

system components both on hardware and software levels, terms of service of external service providers and

legal obligations. The context is often captured in domain specific languages such as database models,

organisational charts, models of software components that are installed on a system or hardware models.

Automatic tools can support the extraction of information from source systems, e.g. detection of software

components. The tool support for populating the context model within the TIMBUS project is described in

[32].

In a next step, Modelling of Context Model & Dependencies the domain specific models are consolidated and

integrated into the TIMBUS context model. TIMBUS developed a model to systematically capture all relevant

aspects of a process. This model is based on the structure and concepts of ArchiMate. It provides a domain-

independent core structure, while domain-specific ontologies can be used to extend the basic model.

Depending on the domain of the business process, different specific models can be integrated into the basic

structure. An important aspect of the model is the relationships between the components. For successful

preservation, the relationships and dependencies between the components need to be maintained over

time. The model is implemented as an ontology, which allows both for the hierarchical categorisation of

aspects into classes and subclasses, and for relating these aspects to each other. More details about the

TIMBUS Context model are described in [10] [11] [33].

The process to instantiate the context model is a combination between bottom-up and top-down approach.

Starting from high level descriptions of a business process (e.g. BPMN-Models) the process can be described

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 36

Copyright TIMBUS Consortium 2011 - 2013

in more detail (e.g. resources the steps are using, communication between steps). The bottom-up approach

starts from detailed models captured in the previous step, e.g. technical infrastructure and resources that

are used for executing operations. The detailed models are aggregated to larger components and artefacts,

and the relationships between the artefacts are established. The combination between the two approaches

helps to achieve a good capturing coverage of relevant artefacts and sufficient details for further processing.

The goal is to capture all aspects of a business process that are relevant for risk management, preservation

planning, preservation, archival storage and redeployment. Formal checks and pattern checks on the context

model can help to indicate missing aspects. These that will be developed as part of the upcoming deliverable

D4.9 Refined Business Process Contexts.

For some required aspects, existing tools can be used to support the automated context acquisition for

domain specific context. Examples are CUDF [34] that describes technical dependencies of packages of

computer system. More information about the automatic capturing of context can be found in [33].

In the last step of Acquisition of business process context, views of the context model are created. A view is a

concrete representation of the process for specific concerns of a stakeholder. The view needs to be

complete and address the concerns of its stakeholder adequately. The different views consist of different

information, representation and different levels of detail. In different views detailed information can be

summarized to more abstract concepts, e.g. detailed component model of a computer can be visualised as a

single entry. A set of predefined views are available as template and defined by ArchiMate [8]. In a first

iteration the context model is created for the assessment of risk as shown in Figure 6. The key concerns for

the risk assessment are involved components, business goals, obligations and involved stakeholders [27]

[28].

The outcome of the Acquisition business process context process is a context model instance (CMI) of the

business process. The models instance describes all relevant information of the process which is needed to

analyse and preserve it.

Decision:

business

process well

specified?

Input Documentation and specification of business process (models, descriptions)

Output Decision if business process is well specified and sufficient documented

 TIMBUS

Architecture

The decision is a manual step without specific need of tool support.

 Stakeholder

involved

R: Preservation Operator

A: Preservation Manager

 Description
In many cases the business process is only briefly described. All steps of the

process need to be specified and documented sufficiently. Business

processes are often integrated and connected to other processes. Hence

well-defined processes with clearly defined boundaries of the processes are

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 37

Copyright TIMBUS Consortium 2011 - 2013

required If the business process is not sufficient document the refinement

process is triggered.

Refine

business

process

specification

Input Source environnement, documentation about business process

Output Specification of business process

TIMBUS

Architecture

Refinement of business process is not core focus of the TIMBUS architecture,

techniques from the area of process mining can support the task [30].

Stakeholder

involved

R: Preservation Operator

A: Preservation Manager

C: Process Owner, Process Operator

Description
The business process is defined and documented including the behaviour,

performance, stakeholders involved and boundaries in sufficient detail.

Process mining tools and methods can support this takes.

Identify

stakeholders

Input Documentation about business process

Output Requirements of the stakeholders (concern)

TIMBUS

Architecture
Preservation Expert Suite: Model Weaver

Stakeholder

involved

R: Preservation Operator

A: Preservation Manager

C: Process Owner

Description
The concerns and interests of involved stakeholders are identified and

documented. The information is used to apply different viewpoints on the

context model instance (CMI). The different views represent the whole

business process from different concerns. A set of predefined views is

available for the TIMBUS context model. In a first iteration the context model

is created for risk assessment (as shown in Figure 6).

Acquisition of

domain

specific

context

Input Source environment, available documentation about the business process

Output Domain specific information of the context

TIMBUS

Architecture

Agent Module: Metadata Capturer

Acquisition Model: Dependency Extractor

LLM: Legality Impact Assessment

Stakeholder

involved

R: Preservation Operator

A: Preservation Manager

C: all other stakeholder

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 38

Copyright TIMBUS Consortium 2011 - 2013

Description
Domain specific context information of the business process is captured and

modelled. For example this could be the used resources, involved IT,

organisation and regulation aspects. The output of the process is a number

of domain specific models representing the context of the business process.

Modelling of

context

model &

dependencies

Input Domain specific models

Output Context model instance (CMI)

TIMBUS

Architecture
Preservation Expert Suite: Model Weaver

Stakeholder

involved

R: Preservation Operator

A: Preservation Manager

Description
The domain specific information is consolidated into a CMI of the business

process. The TIMBUS context model provides a basic structure that can be

extended by domain specific models [10] [11] [33].

Create views Input CMI, requirements of the stakeholders (concern)

Output CMI with views

TIMBUS

Architecture
Preservation Expert Suite: Model Weaver

Stakeholder

involved

R: Preservation Operator

A: Preservation Manager

I: Risk Manager

Description Creation of views for the different concerns of the stakeholders.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 39

Copyright TIMBUS Consortium 2011 - 2013

3.4.2.3 Assessment of Preservation Approaches

The Assessment of the Preservation Approaches is responsible for the specification of the preservation

requirements, the identification of potential preservation strategies, and the evaluation and comparison of

the strategies. The process consists of five steps as shown in Figure 8. The assessment is triggered by the risk

management, asking for a risk mitigation strategy for specific identified risks of the business process. The

result of the process is a list of preservation plans specifying different preservation strategies for the

business process.

Acquisition of business process context for Digital Preservation

The assessment starts with a refinement of the context model instance that was created for the risk

management. The context acquisition process follows the same process described in Section 3.4.2.2, but this

time, the context model addresses the concerns of Digital Preservation rather than the risk management.

The Acquisition of the business process context for Digital Preservation will be described in Section 3.4.2.3.1

in detail and the process steps will be shown in Figure 9.

The result of this process is a CMI that support the development of preservation plans for the business

process. Detailed information about the technical implementation is required e.g. infrastructure, software.

Document Preservation Requirements

In the next step, the requirements for the preservation of the business process are identified. Based on

policies and guidelines of the organisation and the input of the stakeholders, the requirements for the

preservation solution and the preservation process are collected from a wide range of stakeholders that

have an interest in the process, e.g. the Process Owner, Executive Manager, Operational Manager, IT

department, and Preservation Manager. This broad stakeholder involvement helps to set the right priorities

for the evaluation and leads to wide accepted solution. A number of influence factors define the

requirements for a preservation solution. Examples are business goals, legal constrains, contracts, SLA

(Service Level Agreements), organisational policies, re-use scenarios, etc. Involved standards, guidelines, and

policies are specified in the CMI of the business process and can be extracted. The reuse scenarios present

Figure 8: Assessment of Preservation Approaches

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 40

Copyright TIMBUS Consortium 2011 - 2013

the predicted redeployment context for the business process. Based on the reuse scenarios requirements

can be defined for a preservation solution.

The requirements consist of the significant properties of the process and the requirements for the

preservation process. Significant properties are those essential attributes of a process, which describe its

unique appearance, behaviour, quality and usability that needs to be preserved over time. The preservation

process requirements define conditions regarding the preservation and redeployment process. They usually

define budget and resource limitation, as well as, standards and guidelines that need to be fulfilled.

The requirements are used to evaluate different preservation approaches. Thus they need to be measurable

and quantifiable. The evaluation is part of the Develop Preservation Plan process (see Section 3.4.2.4).

Amongst others, two important aspects have to be considered specifically for business processes that are

not sufficiently taken into account in existing work for preservation planning of static objects. First,

requirements regarding the behaviour and performance of the process need to be specified. As a business

process can have a quite complex behaviour, the separation of the business process into modules can help

to set the requirements. The second aspect comprises legal and contractual obligations. The use of external

products such as software, data, web services, and hardware can introduce limitations and obligations for

the usage of the products. In order to develop a legally conforming preservation solution, SLAs, usage terms,

contracts and laws need to be considered.

A recognised model for preservation requirements is an objective tree [35]. It provides a hierarchical

structure of requirements where groups of requirements are further refined to become more detailed and

measurable criteria on the lower levels. For complex systems such as business processes, the list of

requirements can be very exhaustive. Hence, a hierarchical structure can help to organise the criteria so that

all aspects and components of a preservation solution are addressed. This systematic approach further

supports the discovery of discrepancies and contradictions in the requirements.

Work on significant properties for digital objects has been done in many Digital Preservation projects e.g.

InSPECT12 or Planets13. Significant properties for more complex objects have been defined for software in

[36] and for interactive content [37]. Work on preservation requirements for behaviour of digital objects is

presented in [38]. An overview about work on significant properties is given in [39] [40]. The preservation

requirements of the civil engineering use case are specified in [1] and outlined in Section 3.6.1 of this

document.

The result of this process is well defined requirements for a preservation solution of the BP. The

requirements need to be specified as concrete and quantifiable criteria in a structured way.

Context Abstraction

The next step is the abstraction and generalisation of the concepts of the CMI. A detailed description of this

step is provided in Section 3.4.2.3.2. The CMI contains a very detailed description of the captured business

12

 http://www.significantproperties.org.uk/
13

 http://www.planets-project.eu/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 41

Copyright TIMBUS Consortium 2011 - 2013

process. Not all implementation details are relevant for the preservation and the later redeployment and can

thus be replaced by higher level concepts for the sake of simplification.

One example for generalisation of implementation details is the information of storage hardware

implementation that can be abstracted to the storage interface. Another example could be or organisational

aspects such as specific skill sets of employees that are involved in the business process. These can be

generalised to role and skill models. The level of abstraction and the aspects that can be generalised depend

on the specific setting, scenario and the preservation requirements. The abstraction of technical details can

improve the development for preservation actions of the components (e.g. replacement through alternative

implementations and use of emulators). In order to ensure trustworthy preservation, all changes and

modifications in the CMI need to be documented. As the abstraction of details implies a loss of information,

the performed modifications need to be verified with regard to the preservation requirements.

Develop Preservation Plan

Develop Preservation Plan is responsible for identifying potential preservation solutions, planning and testing

the solutions and evaluating their plans against the previously defined preservation requirements. The

detailed process is described in Section 3.4.2.4. The preservation plan consists of a procedure to capture the

business process and its components from the source system, the required actions to maintain it for the long

term and the procedure to redeploy and verify the process in a new environment.

Due to the complexity of business processes (e.g. distribution over different systems and use of external

services), the preservation plan usually consists of combination of different preservation strategies.

Examples for the technical aspects of a process are different migrations for static documents (e.g. the

documentation of the process, contracts, etc.). For hardware component of the process, emulation

approaches can maintain their functionality over time. The dependencies of the components need to be

identified and documented, as modifications of components can propagate through the system and

therefore interfere with the functionality of other components.

The evaluation of preservation plans determines whether the plans are able to fulfil the preservation

requirement. If the developed plans fail in this regard, a new iteration of the assessment approach is started

(as shown in Figure 8). The preservation of complex processes can require multiple iterations to find suitable

preservation solutions. The iteration of the assessment can include:

 detailed context capturing if required artefacts were missing,

 changes of preservation requirements if the current requirement cannot be fulfilled for example

through technical, financial or legal restrictions or

 other preservation approaches need to be evaluated.

The outcome of this process is a list of evaluated preservation plans.

Build Preservation Action Plan

The last step of Assessment of Digital Preservation Approaches is the creation of a preservation action plan.

This plan specifies the workflow to execute the evaluated preservation plan, and defines conditions, triggers,

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 42

Copyright TIMBUS Consortium 2011 - 2013

and responsibilities for each step. Moreover, quality ensuring mechanisms for the execution phase are

planned.

As a final step of the planning phase the evaluated strategies and the analysis are summarized. The report is

submitted to risk management for decision making.

Acquisition

business

process

context for

Digital

Preservation

Input Source environment, CMI, RAR

Output CMI

TIMBUS

Architecture

DP Agent Module, DP Acquisition Module, Legal Life-Cycle Module,

Preservation Expert Suite

Stakeholder

involved

RA: Preservation Manager

C: all other stakeholder

Description
The existing CMI of the business process is refined and extended for the

assessment of DP approaches. For the preservation more detailed

information about the implementation of the process is required.

Document

preservation

requirements

Input CMI

Output List of preservation requirements for the business process

TIMBUS

Architecture
Preservation Expert Suite: Preservation Alternative Assessment

Stakeholder

involved

R,A: Preservation Manager

C: all other stakeholder

Description
In this step the requirements for a preservation solution are collected and

organised. They are contributed by the different stakeholders of a business

process. The requirements are derived from the redeployment scenarios,

business goals, institutional policies and guidelines and legal obligations and

include technical, organisational, legal and financial aspects. Requirements

need to be measurable and define acceptable thresholds and knock-out

criteria for preservation solutions.

The requirements define the significant properties of the process. Those

include all characteristics of the process that need to be preserved over time.

Abstraction

of process

context

Input CMI, preservation requirements

Output CMI with abstracted concepts

TIMBUS Preservation Expert Suite: Model Weaver

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 43

Copyright TIMBUS Consortium 2011 - 2013

Architecture

Stakeholder

involved
RA: Preservation Manager

Description
The captured CMI contains implementation details of the business process.

For later redeployment not all details are required. In order to facilitate

further treatment, implementation details can be abstracted and generalised

to higher level concepts. As the abstraction implies a loss of information,

performed modifications of the CMI need to be verified against the

preservation requirements. It needs to be ensured that all required

information for the redeployment is preserved.

Develop

Preservation

Plan

Input CMI, preservation requirements

Output Evaluated preservation plans

TIMBUS

Architecture

Preservation Expert Suite: Preservation Alternative Assessment, Preservation

Planner, Validation and Feedback, Preservation Log Gap Detector

DP Engine Module: Preservation Executer, Execution Monitor

Stakeholder

involved
R,A: Preservation Manager

Description
This step is responsible for identifying potential preservation strategies,

planning and testing the solution and evaluating the resulting plans against

the previously defined preservation requirements. The preservation plan

consists of the procedure to acquire the business process and its

components from the source system, the required preservation actions and

the procedure to redeploy the process in a new environment. The effects of

applying the action are analysed against the preservation requirements. If

the plan fails to fulfil the preservation requirements the assessment process

is restarted to address the weak spots of the plan.

The outcome of the step are evaluated preservation plans for the business

process.

Build

Preservation

Action Plan

Input Evaluated preservation plans

Output Evaluated Process Preservation Action Plans (PPP)

TIMBUS

Architecture
Preservation Expert Suite: Preservation Planner

Stakeholder
RA: Preservation Manager

I: Risk Manager

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 44

Copyright TIMBUS Consortium 2011 - 2013

involved

Description
The Preservation Action Plan specifies the required activities to execution

the preservation approach. It defines responsibilities, conditions and triggers

for the actions. Moreover quality ensuring mechanisms are planned for the

execution phase. The evaluation results of the different approaches are

summarised and submitted to the risk management for decision making.

3.4.2.3.1 Acquisition business process context for Digital Preservation

Figure 9: Acqusition business process context for Digtial Preservation

The Acquisition of business process context for Digital Preservation follows the same procedure as the

acquisition process described in Section 3.4.2.2. The only difference in the processes is that for the first

acquisition the business process specification is checked for completeness (as shown in Figure 7). In this

step, the existing CMI is then extended and refined. The addressed concern by the context model has

changed. The first iteration of the CMI focused on the risk assessment of the process. The second iteration is

used for the planning of the Digital Preservation solution for the business process. The change of the

application area needs to be reflected in model instance.

Figure 9 shows the BPMN model of the Acquisition of business process context for Digital Preservation

process that starts with the identification of the stakeholders. For the preservation two stakeholders are

primarily responsible: the Preservation Manager and Preservation Operator. The concerns of the two

stakeholders require detailed information about the implementation of the business process. In the next

step domain specific context is captured. A detailed breakdown of the implementation of the business

process is required for preservation, including software services, infrastructure, behaviour and

organisational aspects. The level of implementation details that need to be acquired depends on the process

scenario as defined in Section 3.3.3 and also on the preservation requirements. For deployed scenarios the

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 45

Copyright TIMBUS Consortium 2011 - 2013

infrastructure including software components and configuration can be captured. In this kind of scenario, it

is not possible to capture the system state or instances of the process. The information system implementing

the business process is seen as black box. The model of the business process can be preserved, but not single

instances of the process execution. In an automated scenario it is possible to capture the entire system

state, but not instances of the process. It includes software, configuration data, and other relevant data. The

scenario is similar to hibernate and snapshot functionalities of existing BPM systems. An orchestrated

scenario provides the highest grade of detail of the process. The software components, configuration data

and the instances of the process can be captured. It allows full access to the components of information

system. In an orchestrated scenario single process instances are identifiable and traceable through the steps

of the business process. The captured information strongly depends on the domain of the process. For the

civil engineering use case described in [1] specific information is required about the sensors that are used to

take measurements in dams. Deliverable 4.3 [22] outlines the domain-specific ontology for sensors that is

currently being developed to support the use case.

After all relevant information has been captured, the domain-specific models need to be integrated into a

context model instance as described in detail in [22]. A major challenge for the preservation of processes is

the maintenance of the relationships between the components over time. Changes to a component, e.g. by a

preservation action can have unintentional effects on other components. The different kinds of relations

between objects that were implemented in the TIMBUS context model are described in [10] [22]. The

dependencies can be extracted from the source environment by tool support or established by the use of

reasoning tools or they can be entered manually by an expert.

The final step of the acquisition is the creation of views in order to support the upcoming steps.

Identify

stakeholders

Input CMI

Output Requirements of the stakeholders (concern)

TIMBUS

Architecture
Preservation Expert Suite: Model Weaver

Stakeholder

involved

R: Preservation Operator

A: Preservation Manager

C: Process Owner

Description
The concerns and interest of the stakeholders are documented. The context

model instance is created for the specific concerns of stakeholders. This

iteration of the CMI focuses on the preservation.

Acquisition

context and

dependencies

Input Source environment, CMI

Output Domain specific models of the context

TIMBUS

Architecture

Agent Module: Metadata Capturer

Acquisition Module: Dependency Extractor

LLM: Legality Impact Assessment

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 46

Copyright TIMBUS Consortium 2011 - 2013

Stakeholder

involved

R: Preservation Operator

A: Preservation Manager

C: all other stakeholders

Description
Domain-specific context information is captured and modelled for

preservation of the business process. Examples are resources, involved IT

systems, organisation and regulation.

Modelling of

context

model &

dependencies

Input Domain-specific models

Output CMI

TIMBUS

Architecture
Preservation Expert Suite: Model Weaver

Stakeholder

involved

R: Preservation Operator

A: Preservation Manager

Description
The domain specific information is consolidated into a context model

instance of the business process. Relationships between the components are

identified and established in the model. The existing CMI is extended with

the detail information gathered for further preservation of the business

process.

Create views Input CMI, Requirements of the stakeholders

Output CMI including views

TIMBUS

Architecture
Preservation Expert Suite: Model Weaver

Stakeholder

involved

R: Preservation Operator

A: Preservation Manager

I: Risk Manager

Description In this step views for the different concerns of the stakeholders are created.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 47

Copyright TIMBUS Consortium 2011 - 2013

3.4.2.3.2 Abstraction of business process context

P
re

s
e

rv
a

ti
o

n
 M

a
n

a
g

e
r

Abstraction of business process context

Analyse context

model instance

Perform

abstraction

Verify

abstraction

Abstraction

fulfils requirements?

Figure 10: Abstraction of process context

In this step the context abstraction of the business process model is performed. The context model describes

the current implementation of the business process in the source system. The aim of the preservation of the

business process is the maintenance of the significant properties (defined as requirements) of the process

over time. For the preservation the exact implementation details might not be relevant in all technical

aspects, as the focus is rather on preserving the logic and information flow of the process. Thus,

implementation details may be abstracted to higher level concepts. The abstraction of technical details can

facilitate the planning for preservation actions of the components (e.g. replacement through alternative

implementations, use of emulators, encapsulation). The level of abstraction and the aspects that can be

generalised depend on the specific setting and the preservation requirements. The abstraction causes loss of

information, thus it is vital to ensure that no relevant information that is required in the future is lost during

this step.

The first step is the analysis of the model to identify potential aspects for abstraction. The abstraction

strongly depends on the preservation requirements. Potential abstractions are persons that can be replaced

by roles with associated rights and obligations. Technical detailed implementation aspects can be abstracted

to standards or used interfaces. Examples are the information of vendor specific storage hardware

implementation that can be abstracted to the storage interface. Queries and patterns can be used to extract

relevant aspects of the context model, but the task requires skilled personal to be executed.

The second step is the execution of the abstraction in the model. The abstracted artefacts are replaced by

the new higher level concepts. Additional information about the replaced individuals such as attributes and

restrictions of the replaced objects need to be reviewed and if relevant assigned to the new individual.

Examples are technical characteristics such as size or performance. The relationships of the replaced

individuals need to be assigned to the new artefact. All changes and modification of the context model need

to be documented for later verification and traceability.

A risk of the abstraction step is the loss of information that is significant for the process. Thus in the next

step the abstracted model is verified against the preservation requirements. The modified model must

contain all information in all detail required to preserve and redeploy the business process. If significant

properties of the process are missing after the abstraction the abstraction process needs to be re-executed.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 48

Copyright TIMBUS Consortium 2011 - 2013

All the modifications that have been applied to the model and the verification of the performed abstraction

need to be documented and preserved for the authenticity of the preserved process. The outcome of the

abstraction process is a context model where implementation details are encapsulated by abstraction. The

abstraction performed in this task specifies the process that is preserved for future redeployment.

Analyse

context

model

instance

Input CMI, Preservation requirements

Output Suggestions for abstraction of CMI

TIMBUS

Architecture
Preservation Expert Suite: Model Weaver

Stakeholder

involved
R,A: Preservation Manager

Description
The context model represents the actual implementation of the business

process. Not all implementation details are required for preservation. Based

on the preservation requirements, the information of the context model can

be abstracted and summarised to a higher level. It eases the preservation of

the business process. Example: the actual instance of a hard disc (vendor,

version and technical data) of a computer. In many cases only the storage

interface is important other technical characteristics such as speed and

cache are not significant, the hard disc card can be abstracted to more

generic level e.g. SATA HD Storage with specific capacity.

Perform

abstraction

Input CMI, suggestions for abstractions

Output CMI with abstracted concepts

TIMBUS

Architecture
Preservation Expert Suite: Model Weaver

Stakeholder

involved
R,A: Preservation Manager

Description
In this step the abstraction is performed. Detailed individuals are replaced by

higher concepts. Attributes and relationships need to be assigned to new

individuals. All modification applied to the model need to be documents to

ensure traceable and trustworthy preservation of the business process.

Verify

abstraction

Input CMI with abstracted concept, original CMI, preservation requirements

Output Evaluation of the performed abstraction (yes/no)

TIMBUS Preservation Expert Suite: Model Weaver

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 49

Copyright TIMBUS Consortium 2011 - 2013

Architecture

Stakeholder

involved
R,A: Preservation Manager

Description
The abstraction of the model results in a loss of information. The verification

against the preservation requirements ensures that all relevant information

for preservation and redeployment are still available.

Decision Input Yes/No decision of Verify Abstraction

Output Trigger for Perform Abstraction or Develop Preservation Plan process

TIMBUS

Architecture
Preservation Expert Suite: Model Weaver

Stakeholder

involved
RA: Preservation Manager

Description
The decision implements quality control and feedback loop. If the

abstraction replaces information that is required in the future, the

abstraction process is restarted.

3.4.2.4 Develop Preservation Plan

Figure 11: Develop Preservation Plan

The Develop Preservation Plan process is responsible for identifying, testing and evaluating preservation

strategies for the business process. The process needs to create a preservation solution that meets

preservation requirements of the specific scenario. The preservation plan defines the capturing, preservation

and redeployment of the process. Figure 11 shows the process steps for the development of a preservation

plan. The steps are described in more detail as follows

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 50

Copyright TIMBUS Consortium 2011 - 2013

In a first step the relevant components of the business process that need to be preserved are identified. A

business process is a complex structure of services and activities. Not all components and functionality are

required to be preserved for the future. The relevant components are selected and identified by using the

context model.

A preservation plan for the selected components is created. Preservation actions to maintain the

functionality, for example using emulation approaches, and to maintain the accessibility of digital objects

(e.g. migration approaches) are identified. A preservation plan for the business process also includes access

methods to redeploy the preserved process in a new environment. In order to ensure that a redeployed

process works correctly and the restored information is authentic, validation and verification mechanisms

are developed.

The preservation plan is evaluated against the previously defined preservation requirements of the setting.

Multiple preservation plans, implementing different strategies for the preservation, can be developed and

then be compared against each other. The process shown in Figure 11 is explained in the following sections

in more detail.

3.4.2.4.1 Select components

The first step of the development of a preservation plan for a business process (shown in Figure 11) is the

selection of the components to be preserved. All assets of a process (services, data, documents, etc.) that

are significant for the process and are required to re-execute the process in the future need to be identified.

The captured context model describes the implementation of the business process, but not all aspects of the

implementation are relevant for preservation. Driven by the reuse scenario and the defined requirements,

the significant artefacts can be identified. It might be possible exclude some parts of the implementation of

the business process that are required for current operations and their performance, but not for the actual

business logic. Examples for such parts are redundant components such as hot standby or load balancing

server. Implementations of business processes are often integrated in larger information systems, where

they are connected to other processes exchanging data for storing, reporting or processing information. In

order to preserve a process, the boundaries of that process need to be clearly defined. Interactions with

other systems and processes that need to be maintained for future reuse scenarios need to be specified. All

services that implement required information and functionality of the process need to be part of the

preservation solution and selected in this step. Interfaces and services for other systems that are out of the

scope of the current business process can also be omitted from the preservation process.

Two approaches can be used to mark components in the context model: selection and exclusion.

Components that are required to fulfil the preservation requirements are manually marked in the context

model by human actors. The manual selection is done on an upper layer in the context model such as

workflows, services and data sources. The low level implementation and dependencies of selected high-level

concepts are addressed in the next step of the TIMBUS process.

Components can also be marked for exclusion from the preservation if they are part of the current

implementation but not required in the future. The exclusion of such components reduces the effort for the

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 51

Copyright TIMBUS Consortium 2011 - 2013

preservation solution. In order to manually select and exclude components for preservation a deep

understanding of the business process is required.

The outcome of this step is the context model instance of the business process with components that need

to be preserved and components that can be excluded from the preservation marked within the model.

3.4.2.4.2 Define Preservation Plan

The definition of the preservation plan is a crucial step in the preservation. In this step plans for the

preservation are identified to fulfil the preservation requirements. A preservation plan consists of:

 Actions to acquire the process data from the source system

 Preservation strategies to maintain the significant properties over time (e.g. emulation or migration

for out-dated components and components that are at risk of becoming obsolete)

 Migration of the process into an archival storage format

 Access procedures for redeployment of the process in the future

 Validation and Verification procedure for the redeployed process

Different technical approaches can be defined and evaluated in this step. A comparison of different plans

helps to identify the most suitable approach for a specific setting. A business process is an orchestration of

tasks that are executed in a particular sequence to achieve a specific and well-defined goal. The process can

be complex, involving various different services. For this reason, a combination of different preservation

actions is applied to preserve a process for the long term. Examples are virtualisation and emulation

approaches for preserving functionality of services, and migration for documents (such as guidelines,

contracts, etc.). The overall goal is to maintain the significant properties of the process over time.

Approaches and results from other preservation projects can be a vital source that helps to identify potential

approaches for parts of the business process.

A challenging task for the preservation of complex processes is the preservation of relationships and

dependencies between components over time. Knowledge of the dependencies is important for maintaining

the functionality of the components. Broken dependencies that are not maintained over time can prevent

the redeployment of the process in the future. Examples are manifold, such as missing libraries for software

execution, missing databases for data input, incompatible hardware for operating systems or missing

credentials for encrypted data. The dependencies need to be considered whenever changes are applied to

components. Modification on components for preservation purposes for example can have undesired side

effects on other components. Examples are the migration of data into other formats that cannot be

processed further by other software components or replacement of software components by new versions

or alternatives that offer different interfaces for interaction. For work on analysing and resolving software

dependencies we refer to [41] [42] [43].

The preservation of external services that are not operated by the host institution is a challenge. While

external services, such as data, storage and computation, offer several advantages for the operation of the

process, the limited access to their implementation creates a lot of problems for the long term preservation.

The availability of external services cannot be ensured as the operation service can be stopped by the

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 52

Copyright TIMBUS Consortium 2011 - 2013

provider, replaced by another service, or the provider can go completely out of business at any time.

Preservation approaches for external services can be the migration to alternative services, the emulation of

the service or the arrangement of an escrow agreement. The different strategies are discussed in detail

below.

Preservation strategies and supporting strategies

Different strategies are used to maintain the significant properties of the process over time. Strategies can

be combined for different components of the process.

 Metadata

In order to maintain the usability, interpretability, accessibility and understandability of the process,

additional metadata of its components are required. Understandability involves providing sufficient

information so the component can be interpreted and understood in the future. Usability refers to

the information that is required to translate the bit stream into a form that can be used by human

users, or processed by computers. The OAIS [3] refers to understandability as Representation In-

formation that provides additional meaning to a digital object. The TIMBUS context model and es-

pecially domain-specific models define many metadata for the process and its component. A lot of

work has been done on preservation metadata and metadata standards in PLANETS14 and CASPAR15.

PREMIS provides a standard for preservation metadata [44]. Domain-specific research on metadata

has been done by KEEP16, ARCOMEM17 and PrestoPrime18 supporting emulators, social web and au-

dio-visual content.

 Migration

Migration can be seen as the copying or conversion of digital objects from one technology to an-

other. The focus of migration is on the digital object rather than its environment. It is used for soft-

ware as well as for hardware, e.g. migration of storage from one storage media to another media.

The migration from one file format to another format implies a modification of the data. It needs to

be guaranteed that no required information will be lost during migration and the significant proper-

ties of the object keeps are kept intact. Migration is a widely adopted strategy for documents stored

in obsolete and out-dated formats that are used by human users.

Besides the traditional migration approaches of format and storage media, the migration to alterna-

tive services or components can be a viable approach for business processes. Business Information

systems are often optimised for performance and workload, characteristics that may not necessarily

be relevant for archiving and future use. Examples are RAID storages, work balanced web services,

etc. The use of single storage media or single web services can ease the preservation of the compo-

14

 http://www.planets-project.eu/
15

 http://www.casparpreserves.eu/
16

 http://www.keepproject.eu/
17

 http://www.arcomem.eu/
18

 http://www.prestoprime.org/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 53

Copyright TIMBUS Consortium 2011 - 2013

nents by maintaining the same functionality. In terms of licences, alternative resources can be suit-

able strategy to overcome legal conflicts. Examples are the use of open source software that allows

for later modification of the application and access to the source code, instead of proprietary soft-

ware. Important is that the alternative implements the same significant properties as the original

service.

Another aspect of migration can rise from the use of external services. As the availability of external

services cannot be assured, a potential strategy is to transfer such external system into the own sys-

tem (in-housing). The strategy requires access to the implementation of the services and data of the

service as well as the licences and right to operate the service. Examples are cloud storage that is

operated by a third party. An equivalent service that is easier to preserve can be set up in-house.

 Emulation

An emulator software mimics the behaviour and functionality of components, hardware or soft-

ware. Emulation is a widely adopted strategy to preserve older computer platforms (e.g. video

game console systems). It provides a layer between the host system and the originally used soft-

ware. For hardware emulation the functionality of original hardware environment is provided by

the emulation software. It translates between the new host system and the original software. Emu-

lation can be used as long term preservation strategy for VMs (virtual machines) if the required

hardware that is directly used by the VM becomes obsolete, or for specific hardware components

that cannot be preserved for the future.

 Virtualisation

Virtualisation (most common hardware virtualisation) has become a common business practice for

server management. Virtualisation software provides a separation layer between the application

services and the underlying hardware resources. It allows for consolidating server instances by using

multiple virtualised servers that might share the same physical environment. By hiding the underly-

ing hardware environment, the virtual machines have become portable and can be easy relocated

on other hardware environments. Virtualisation has become widely adopted in IT with numerous

solution providers for hardware and software. Examples for virtualisation software are Oracle Virtu-

alBox19 and VMWare20.

The separation from actual hardware provides an abstraction layer of the physical environment,

such as network, storage and display. It increases the robustness of the VM against changes of the

underlying hardware. The virtualisation is a practical approach to capture complex systems to main-

tain the dependencies within the VM. A VM uses some of the host system hardware directly. A part

of the commands of the virtualised machine is executed directly on the hardware, e.g. CPU instruc-

tions. Other commands are executed by the VM software. The long term use of virtualisation is lim-

19

 https://www.virtualbox.org/
20

 http://www.vmware.com/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 54

Copyright TIMBUS Consortium 2011 - 2013

ited as it works only if the used physical environment (e.g. CPU) is compatible to the VM software.

As soon as the hardware gets obsolete, hardware emulation is required to run the VMs. Different

virtualisation approaches can be applied to existing business processes that are not implemented in

a VM yet.

o Clone: a virtual image of an existing system that corresponds to a 1:1 mapping between the

physical original system and the created VM. Small modifications are done for driver sup-

port of the VM layer. Tool support for such a conversion is provided for most operating sys-

tems. The clone contains all software components that are on the physical machine. In

many cases a machine is not a dedicated host for the software of a single business process,

but hosts various software services, which would be all captured in the VM. The additional

software that is not required by the process can cause problems in the future. For example

security problems by unauthorised access to the system via external services that are no

longer maintained or concurrency problems arising from the locking of resources. Unused

software services should thus be uninstalled from the captured VM for preservation.

o Build: this approach sets up a new VM with all required components for the business pro-

cess. The required software components, data and configuration of the business process

are extracted and identified from the source system. A new VM is set up by installing the

software components with the collected configuration and the stored data. The build ap-

proach can be useful for systems that host different services that are not required for the

business process to be preserved. The result of this approach is a dedicated VM that con-

tains only the required components for the business process.

 Re-build of SW Systems

Re-build stores the required software system in an archive. The idea is to identify the installed soft-

ware packages, configuration and data of the source system. The installation sources of the soft-

ware packages including the configuration and data are stored for archiving. At redeployment time,

the system is rebuilt from these archived sources. This approach is similar to the building of virtu-

alised instance, but instead of building a ready virtual machine image, the sources of the software

services are archived.

The re-build of a system can be automated with tool support for example for Linux21 22. The identifi-

cation of installed software as well as the instantiation of a new installation can be automated. In

WP6 of the TIMBUS project, we are developing tool support for Linux systems to provide automated

re-build.

 Mock-up of SW Services

A potential solution for software services provided by third parties (e.g. Web Services) can be a

mock-up of the services in the form of a simulation of the original service. The basic principle is to in-

21

 http://wiki.debian.org/VMBuilder/
22

 https://launchpad.net/vmbuilder/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 55

Copyright TIMBUS Consortium 2011 - 2013

tercept and record messages from the original system, which the simulation can then use to respond

to request that have been captured previously. The approach is limited, as it can only be used for de-

terministic services (i.e. services for which the request and response pair always match, and which

themselves are not dependent on any external state), and the mock-up can only respond to messag-

es that have been recorded in the original system. For simple external services and for the preservation

of particular instances of a process the mock up can provide a suitable solution if no other possibili-

ties are given. An analysis of mock-up strategies for web services, and recommendations to make

web services more resilient in general, can be found in [45].

 Software Escrow

Business processes are often executed by using proprietary and customised software application and

services. The software is developed and adapted for the individual needs of the customer by an ex-

ternal software vendor. The software is in many cases delivered as closed source to the customer

that means the source code remains at the vendor and only the binaries of the software are deliv-

ered to the customer. From the preservation perspective, this scenario limits the potential preserva-

tion strategies for the software, as the software cannot be adapted to changes in the execution envi-

ronment in the future. This implies that the execution environment itself needs to be maintained for

the future, which can lead to considerable efforts. One option to improve the range of preservation

strategies for proprietary software is Software Escrow. In a Software Escrow agreement, the source

code of the software is deposited at a third party and released to the customer in case of predefined

events (e.g. when the vendor goes out of business, or does not want to further maintain the soft-

ware). A detailed description of Software Escrow, including the legal aspects as well a framework

supporting the validation of the deposit material, is described in Chapter 4. An escrow agreement al-

lows that the software can be adapted to new requirements in the future.

The escrow principles can also be applied for external services. When a service provider deposits the

implementation of the services at an escrow agent, the user of the service can get access to the im-

plementation once the service gets unavailable. This could enable the user to run the service at his

site if the provider stops offering the service.

Security aspects

Business processes have implemented a number of security features for example to avoid unauthorised

access to sensitive data to prevent fraud, manipulation or data theft. Information security features do not

provide any functional per se security is regarded as a non-functional property, but is not required for the

execution of a business process. Nevertheless, in many cases it is a required feature to protect the data by

implementing security arrangements such as file encryption, complex user authentication and authorisation,

or firewalls. Naturally, many security features are in conflict with the goals of Digital Preservation. The

former seeks to limit access, while the latter pursues the goal of enabling easy access. Security adds

complexity to systems, wherever it is implemented, and thus increases the effort required to preserve a

system. Successful preservation provides two options: either remove security features wherever possible, or

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 56

Copyright TIMBUS Consortium 2011 - 2013

make security features future proof. Both options are challenging tasks and require well-considered

methods.

Removing security features completely is only an option if a business process can be executed completely

within a controlled environment, i.e. in virtualised machines that runs on a secured and hermetically sealed

host system. In many cases this solution will not be possible, either if legal regulations or policies require

security implementations or if there are too many dependencies on distributed systems that are beyond the

control of the process owner. For many businesses it is essential to avoid data leaks and security breaches at

all times, especially with regards to reputation and public perception. The main goal for the second option,

preserving security features of business processes, is thus to keep them secure after redeployment as well.

Hence authentication mechanisms such as passwords and user credentials and the software need to be

preserved in a reliable way. As users (i.e. employees) might change in the future, their user roles,

capabilities, competencies, job descriptions and other data needs to be preserved along the technical

infrastructure as well. This includes authorisation models, software and other required systems. If it is not

explicitly stated within the authorisation or authentication descriptions already, the roles must be mapped

to organisational units and competencies as well. It is necessary to be able to derive a precise definition of

who is allowed to access which data and which infrastructure. The establishment of security mechanisms in

the redeployment environment is part of the redeployment procedure.

Preserving the security of a business process always bears risk. Common examples are passwords that have

been lost during the course of time. If an encryption method is still secure enough not to be broken within

reasonable time and effort, the loss of passwords can be a serious problem that makes the recovery of the

preserved encrypted artefacts impossible. The same is true for secure authentication systems that require

special software to be available in all involved systems (e.g. proprietary solutions). Data leakage,

manipulation and fraud, viruses and hacker attacks will also in the future threaten redeployed business

processes. Hence a well-balanced level of security is essential for the preservation of business processes and

their successful redeployment. Research on the security aspects of business processes for Digital

Preservation is done in Task 4.7 of the TIMBUS project and will be presented in the upcoming deliverable

D4.7 Validation of DP'ed Business Processes & Verification of Redeployed Business Processes.

Procedures

The result of this process step is a Process Preservation Plan which defines four different procedures:

acquisition, preservation, redeployment and verification & validation procedure. A procedure defines trigger

events, condition and responsibilities for a set of activities.

 Acquisition procedure

In order to preserve the process in the archive, the components and the process need to be cap-

tured. The acquired data need to be consistent, complete and in a suitable format.

Depending on the process scenario as defined in Section 3.3.3, different levels of information are

captured from the source environment. The preservation strategies employed also define the re-

quired data to acquire. Examples of the data are the software components and configuration set-

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 57

Copyright TIMBUS Consortium 2011 - 2013

tings data. The data need to be captured in a consistent state of the process. This means all data

needs to be in a valid state, e.g. transactions are finished, and data is stored persistently. The rede-

ployment of the data should lead into a defined and valid state of the process again, which can then

be executed. The capturing can be for example a snapshot of a database or the virtualisation of a

machine. The data needs to be captured in a suitable format that can be further processed at a later

stage for preservation, archival storage and redeployment. The format depends on the preservation

and redeployment strategy for the component.

 Preservation procedure

The preservation procedure defines all actions applied to the business process that migrate the pro-

cess into a format ready for archival storage and ensures the long term availability of the compo-

nents. The preservation strategies are defined in the preservation procedure. Actions to treat com-

ponents that are at risk of becoming obsolete or of not being available in the future (e.g. third party

services) are also defined here. Quality-ensuring measurements for verifying the results of preserva-

tion actions need to be defined. Preservation metadata is assigned to the archived business process

data.

 Redeployment procedure

The redeployment procedure defines how the business process can be taken from the archive and

how it can be executed again in a new preservation environment. It defines the steps for the rede-

ployment including technical, organisational as well as legal aspects. The technical procedure de-

scribes the required services that need to be provided by the redeployment environment, the setup

for the software services and the provision of the required data. The organisational procedure de-

fines, for example roles that need to be assigned to actors and credentials of the redeployed ser-

vices that need to be set (e.g. access rights to privileged data). The redeployment needs to be

checked for legal correctness according to current regulations. This applies, for instance, to the re-

deployed data that are particularly protected by law (e.g. personal data, medical data), contracts

with third parties (e.g. external web services) and usage terms for software.

 Verification and Validation procedure

In order to ensure that the process is redeployed correctly, a verification and validation (V&V) pro-

cedure is required. It defines measurement points to check that the redeployed process shows the

same significant properties as defined for the original process. The V&V check should cover all sig-

nificant properties defined as part of the preservation requirements.

Validation and verification data are collected in the source environment for this check. A framework

for validation and verification of archived business process is currently under development and will

be presented in the upcoming deliverable D4.7 Validation of DP'ed Business Processes & Verification

of Exhumed Business Processes. The V&V plan specifies the validation and verification procedure

for the preserved and redeployed business process.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 58

Copyright TIMBUS Consortium 2011 - 2013

Identify external dependencies

The preservation plan defines the external dependencies of the preserved business process. A preservation

solution has different external dependencies on components that are not part of the archived process.

Examples are technological dependencies such as the required computer architecture for redeployment,

used file formats, operating systems, software and interfaces in the process. Organisational and legal

dependencies are contracts, policies and regulations. The external dependences are either directly used in

the preserved process or indirectly affect the process, e.g. operating system to run an emulator, viewer

applications for file formats or CPU architecture to run software. In order to keep the preserved business

process accessible and useable for the designated community, changes of the external dependencies need

to be monitored. Monitoring is part of the risk management (described in Section 3.4.2.1). The monitoring

process for archived business processes is described in Section 3.4.5. If the preserved business process

depends on technology that is no longer available or at risk of becoming obsolete (such as a CPU, operating

system, or network infrastructure), preservation actions need to be taken. Then the assessment of DP

approaches process is triggered by the monitoring. The context model instance can be used to identify

external dependencies by identifying components that are not included in the preserved business process.

The identified interfaces between components of the preservation solution and the outside world in the

context model helps to define the monitoring criteria for the archived process.

The definition of a preservation plan is a highly complex task, as different aspects need to be considered for

a holistic preservation solution. The process to identify and create a plan strongly depends on the settings

surrounding a business process. In this section we described the procedures of a preservation plan and key

aspects that need to be considered for preservation. As a result, this step should produce plans that acquire,

preserve, archive, and redeploy the business process. The plans define technical as well as organisational

steps to acquire the required data from the source environment, apply preservation actions and prepare the

process for archival storage. Procedures for later redeployment in new environment are defined as well as

measurements to validate und verify the redeployed process behaviour.

3.4.2.4.3 Evaluate plan

The preservation plans defined in the previous step need to be evaluated against the preservation

requirements, to assess whether the proposed procedures are complete and correct.

For a full evaluation of the plan all actions defined therein have to be executed and evaluated. Due to the

complexity and required effort of the plan not all aspects can usually be tested to full extent. For this reason,

samples and parts of the process are used for the evaluation. The subset for the evaluation needs to reflect

the variance of technical components of the process, be it file formats or different software components

that are involved in the process. In order to evaluate the correctness of the preservation process and of the

redeployment process, the preservation requirements are analysed and measurement points for the

requirements are defined. Comprehensive requirements such as conformance to standards, guidelines or

laws can require the consulting of domain experts for the evaluation. In the next step, experiments are

designed to test the requirements. All experiments need to be repeatable and documented. For testing the

redeployment procedure, empty test systems or virtual machines can provide a redeployment environment.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 59

Copyright TIMBUS Consortium 2011 - 2013

In the evaluation step, the experiments are executed and the measurements are taken. An important aspect

of the evaluation is cost assessment for the preservation process. Approaches for the cost calculation of

preservation with respect to business processes are presented in [24].

3.4.2.4.4 Analyse results

In the next step the results of the evaluation are analysed. Hence the measurements taken in the

redeployment environment are analysed and checked against the requirements. The results of different

plans are compared with each other to identify the advantages and disadvantages of the available

approaches. Risk measurements are also identified in this task. This is achieved by the risk management of

the business process and the effects of the application of preservation plan on the identified risks are

analysed.

The evaluation data which is gathered in this step serves as preparation for the decision making. Important

evaluation criteria are the fulfilment of the preservation requirements and the costs of the plans.

3.4.2.4.5 Decision: Preservation plan complete

The decision determines whether the proposed preservation solutions fulfil the preservation requirements

or if the preservation attempt failed. In the latter case, a refinement process for the re-acquisition of the

context and a re-planning of the strategies can be triggered (as shown in Figure 11). The same is true if

components of the process are missing or more detailed aspects for preservation are needed. In this case

again the acquisition of the context is retriggered. New approaches can be tested by re-execution of Define

Preservation Plan. Different preservation tools or refinement of procedures can improve the plans. When

the preservation plan meets the preservation requirements the next step is the development of a

preservation action plan as defined in Section 3.4.2.3.

The outcome of Develop Preservation Plan process is one or more plans for the preservation of the business

process that complies with the preservation requirements of the setting.

 Select

components

Input CMI, Preservation Requirements

Output CMI with selected component

TIMBUS

Architecture
Preservation Expert Suite: Preservation Alternative Assessment

Stakeholder

involved
R,A: Preservation Manager

Description
The CMI describes the current implementation of the business process. In

this step components of the business process are selected that need to be

preserved in order to maintain the significant properties of the process. The

selection can be supported by reasoning techniques that identify

dependencies of components that need to be preserved. Other components

of the implementation can be excluded for preservation as they are only

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 60

Copyright TIMBUS Consortium 2011 - 2013

needed for current execution but are not relevant for the future, e.g.

reporting to other services, load balancing, and backup functionality (i.e.

non-functional requirements).

Define

Preservation

plan

Input Preservation requirements, RAR, CMI with selected components,

Preservation Knowledge Base

Output Defined preservation plan for the business process

TIMBUS

Architecture
Preservation Expert Suite: Preservation Alternative Assessment

Stakeholder

involved
R,A: Preservation Manager

Description
In this step preservation approaches are defined including procedures to

acquire the process data from the source system, preservation strategies to

maintain the significant properties over time (e.g. emulation or migration for

out-dated components and components that are risk of becoming obsolete),

migration of the process into an archival storage format, access procedures

for redeployment of the process in the future and a procedure for the

validation and verification of the redeployed process.

Evaluate plan Input CMI, defined preservation plans, source environment

Output Evaluation of the preservation approaches against the preservation

requirements

TIMBUS

Architecture

Preservation Expert Suite: Preservation alternative Assessment, Preservation

Planner, Preservation Log Gap Detector

DP Engine: Preservation Executer, Execution Monitor

Stakeholder

involved
R,A: Preservation Manager

Description
The aim of the process is to evaluate the preservation approach against the

preservation requirements. Experiments are designed to evaluate different

aspects of the preservation process. The results of the experiments are

evaluated.

Analyse

results

Input Results of the evaluation step

Output Evaluated preservation alternative

TIMBUS Preservation Expert Suite: Validation and Feedback

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 61

Copyright TIMBUS Consortium 2011 - 2013

Architecture

Stakeholder

involved
R,A: Preservation Manager

Description
The results of different approaches are compared against each other.

Advantages and disadvantages of the approaches are identified. The analysis

prepares the collected data of the evaluation for decision making.

Decision:

Plan fulfils

the

requirements

?

Input Evaluated preservation plans

Output Decision whether the preservation approaches fulfil the requirements or if

components are missing or requirements are not fulfilled

TIMBUS

Architecture
Preservation Expert Suite: Validation and Feedback

Stakeholder

involved
R,A: Preservation Manager

Description
The decision implements an iterative refinement for preservation

approaches. The refinement can include a re-execution of the context

acquisition or a re-definition of the preservation approaches.

If the preservation alternative fulfils the preservation requirements the

Define Preservation Action Plan process is triggered.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 62

Copyright TIMBUS Consortium 2011 - 2013

3.4.3 Preserve

Figure 12: Preserve

The preservation phase is triggered by the risk management process to execute the planned actions for the

preservation of the business process. The process steps are shown in Figure 12. The acquisition and

preservation procedures of the preservation plan are applied to the business process. The software and data

of the business process are captured from the source environment. Preservation actions are executed and

the process is prepared for archival storage. Quality assurance mechanisms check the correct execution of

the preservation phase.

3.4.3.1 Operational planning of preservation execution

In the first step of this phase, the preservation plan is initiated on the business process. Triggers and

preconditions for the data acquisition and preservation procedure are defined for the current stetting. The

responsibilities for each task are assigned to persons in the organisation. Quality Assurance (QA)

mechanisms are defined and planned for each process step. The QA checks the output and input of each task

against requirements and standards. It helps to monitor the execution of the preservation ensuring

completeness and correct capturing and preservation of the business process.

3.4.3.2 Acquisition of process data

In this step all required data for the preservation of the business process are acquired from the source

environment. The level of captured data depends on the process scenario as defined in Section 3.3.3.

Software components, configuration data and other relevant data are acquired. The required data are

specified by the preservation requirements and the planned preservation strategies. For the acquisition of

data it is important to capture a valid state of the process for a correct re-execution in the future. Software

components such as databases and workflow engines support the export of snapshots of the system state.

Moreover-so-called “Physical-to-Virtual” (P2V) tools (e.g. VMware Converter23) support the creation of

snapshots of physical machines.

23

 http://www.vmware.com/products/converter/overview.html

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 63

Copyright TIMBUS Consortium 2011 - 2013

3.4.3.3 Acquisition of validation and verification data

In order to check the correct redeployment of the process in the future, validation and verification data need

to be acquired from the source system as reference points. Examples for validation and verification data are

log files of software components or defined behaviour tests consisting of input and expected output

samples. The validation and verification plan created in the planning phase defines measurement points of

the process and expected values. The expected values are captured form the source environment in this

step. Logging tools can help to acquire the test data, as they can record the message exchange and the

information flow between software components. If the components implement a deterministic behaviour,

the data can be used to validate and verify the redeployment, because if the same data is processed in the

new environment, the results should be identical. For non-deterministic software components, the test

cases need to be defined manually.

3.4.3.4 Perform preservation action

After the data was captured from the source system the required preservation actions are applied. In many

cases, several preservation actions have to be combined in order to achieve the desired results. These

actions can include the execution of tools (e.g. migration tools) or the setup of a specific rendering

environment (e.g. emulators). As the preservation actions often include modifications and changes to the

data, the correct execution of all preservation actions need to be monitored. Undetected errors that occur

during the execution of a preservation action can lead to a loss of information. A quality check of the result

of the preservation actions is done in the next step.

After the execution of the preservation actions the process data are prepared for archival storage. It includes

the assignment of archival metadata and the migration into a format that can be stored in the archive. The

metadata help to organise, describe, index, structure, discover, find and manage the digital information. For

the business process the description of the relations and dependencies of the process components is very

important. The archival storage also includes the redeployment procedure.

3.4.3.5 Perform quality assurance

The completeness of the correct data, correctness of the preformed actions and the successful migration to

an archival storage format need to be validated and verified before the process data is finally stored in the

archive. The QA needs to ensure that the significant properties of the process are intact and that all required

information and components for the redeployment are present. The quality check can be done on different

levels. The output of single preservation actions can easily be verified (e.g. for format migration, the content

of the resulting output file can be checked). For a complete validation of the preservation of the complete

business process, the redeployment needs to be executed for testing purposes. An empty system (e.g. in the

form of virtual machines) can be used as a test environment. The redeployment process is executed as

described in Section 3.4.4. The validation and verification procedure can be used to check the significant

properties of the redeployed process.

A negative result of the quality assurance leads to a re-start of the preservation phase, with refinements for

the execution (as shown in Figure 12). If the preservation requirements are fulfilled, the preserved business

process can be stored in the archive.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 64

Copyright TIMBUS Consortium 2011 - 2013

3.4.3.6 Archival storage

In this step the business process is stored in the long term archive. The correctness of the preservation has

been validated and verified. The process can now be bundled and stored. The selected preservation

strategies and supporting strategies as discussed in Section 3.4.2.4 define the stored data in the archive, e.g.

VM images or software repositories for redeployment. A notification is submitted to the risk management

about the progress to update the risk registry.

3.4.3.7 Define monitor events

Once a business process has been stored in the archive, the work is not done yet. In order to guarantee the

long term capabilities of the archive, the preserved business process in the archive needs constant

monitoring. This monitoring helps to ensure that the preserved business process is prepared for the

demands of a changing environment. Two aspects need to be considered for the archived process: that the

process is compliant with the organisation’s preservation objectives and the external dependencies of the

preserved process are available. In this step monitor events of the preserved business process are defined

that need to be collected and analysed. The monitoring of the events is part of the risk management. The

general risk monitoring and review process is described in [24]. The specific monitoring process of archived

business processes and the acquisition of relevant data for the monitoring of the business is described in

Section 3.4.5 that feeds into the monitoring process described in [24].

External dependencies need to be actively monitored to ensure that the process can still be redeployed.

Such dependencies are software and hardware requirements, as well as organisational settings or legal

environments that are required to redeploy the process. The external dependencies are identified as part of

the Develop Preservation Plan process as described in Section 3.4.2.4. In this step measurements and

thresholds for the external dependencies are defined. They are submitted to the risk management for active

monitoring.

Review cycles for the redeployment procedure and for the preservation and redeployment technology are

defined and submitted to the risk management. The results of this process are fed into the monitoring and

review process of the risk management described in Section 7.4.5 in [24]. The following table shows the

specification of the activities in the preservation process.

Operational

preservation

execution

planning

Input Selected preservation strategy, PPP

Output Execution plan for preservation of the business process

TIMBUS

Architecture
Preservation Expert Suite: Preservation Planner

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

C: Operational Manager, Technology Operator

Description
In this step schedule is defined for the execution of preservation and

responsible persons are assigned.

Acquisition of Input Source environment, PPP

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 65

Copyright TIMBUS Consortium 2011 - 2013

process data
Output Captured software, data and configuration from live system (e.g. current

snapshot of data bases)

TIMBUS

Architecture
Agent Module: Metadata Capturer

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

C: Operational Manager, Technology Operator

Description
Capturing of required data from the source environment. Defined

synchronisation points to capture a valid state of business process.

Acquisition of

validation

and

verification

data

Input Source System, PPP

Output Validation and Verification data for the preserved business process

TIMBUS

Architecture
Agent Module: Metadata Capturer

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
In order to validate the correctness of the preserved business process at

exhumation stage, validation data are required for the validation procedure.

The capturing of validation data is defined in the preservation plan.

Perform

preservation

action

Input Captured data and PPP

Output
Preserved business process (updated CMI, new data, software, configuration,

documentation of performed preservation action)

TIMBUS

Architecture

DP Engine: Preservation Executer, Execution Monitor

Preservation Expert Suite: Preservation Planner

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
Execution of preservation action including emulation, migration,

virtualisation, etc.

Assignment of additional metadata for preservation

Perform

quality

Input Preserved business process

Output Evaluation of QA

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 66

Copyright TIMBUS Consortium 2011 - 2013

assurance
TIMBUS

Architecture

Preservation Expert Suite: Preservation Log Gap Detector, Validation and

Feedback

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
In order to verify the captured business process and the executed

preservation action the preserved business process needs to be tested

against the preservation requirements. For that purpose the business

process is redeployed on an empty test system to validate its behaviour.

Decision:

Preservation

successful

Input Results of QA

Output Yes/No decision

TIMBUS

Architecture
Support for this decision is given by the Preservation Expert Suite.

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
Feedback loop for refinement of the preservation actions. If the preservation

results do not meet the requirements, the preservation process can be

restarted for refinement of the actions.

Archival

storage

Input Preserved BP

Output AIP (Archival information packages)

TIMBUS

Architecture
Preservation Repository

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
Migration of business process in storage ready format. Storage in archive

repository.

Define

monitor

events

Input PPP and CMI

Output Defined monitor parameters for re-evaluation of preserved business process

TIMBUS

Architecture
iERM: Risk Monitor

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 67

Copyright TIMBUS Consortium 2011 - 2013

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

I: Process Owner, Risk Manager

Description
Events are defined which require a re-evaluation of the preservation plan.

Possible triggers for the events are e.g. periodically scheduled reviews, or

changes in external dependencies. These changes could by of technological

(external services, hardware, software) or organisational nature (target

community, requirements, law).

3.4.4 Redeployment

Figure 13: Redeployment

The redeployment phase defines the reactivation of a preserved business process in a new environment.

Beside the technical redeployment of the process, organisational and legal aspects of the process need to be

reactivated and adjusted to the organisational structures and legal conditions. The redeployed business

process is then verified against the validation measurements of the original process. The process steps are

shown in Figure 13.

3.4.4.1 Retrieve business process from archive

In the first step, the process description of the archived process is retrieved from the archive. The

description includes the redeployment procedure and the inventory list of the archival package including

artefacts and the relation with other components. The redeployment procedure describes the required

infrastructure for the redeployment including technical as well as organisational aspects.

3.4.4.2 Capture redeployment environment

In this step, the characteristics of the redeployment environment are captured. This includes the suitability

and compatibility of the new execution environment with the archived process. The available technical

components, organisational and legal aspects that are relevant for the redeployment of the process are

identified. The context model can be used to describe the context of the redeployment environment.

Additional tool support can be used to acquire the technical aspects of given environment.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 68

Copyright TIMBUS Consortium 2011 - 2013

3.4.4.3 Gap analysis

The gap analysis compares the required environment for the redeployment of the business process and the

actual redeployment environment. It identifies matches of components as well as elements missing for the

redeployment procedure. In the next step the identified gaps are addressed.

3.4.4.4 Assessment of redeployment alternatives

For the redeployment, the technical infrastructure needs to be adjusted and prepared providing hardware,

interfaces and software services for the process. The redeployment procedure is adjusted and extended for

the given environment. Gaps that were identified in the previous step need to be resolved. Different

approaches can be used to overcome the gaps, e.g. the use of different tools to emulate components, or

migration of data formats. Information security features are identified that can be used for the redeployed

process to avoiding unauthorised access to sensitive data and services. Security mechanisms that were

implemented in the archived business process might have to be replaced by current techniques to be

conforming to current standards, as the original (and thus potentially outdated) security feature

implementations bear the risk of vulnerabilities. Redeployment strategies are tested and evaluated from

technical as well as financial point of view. Beside the technical redeployment, organisational and legal

discrepancies need to be resolved. The outcome of this step is a set of actions that prepares the current

environment for the redeployment of the business process as defined in the redeployment plan.

3.4.4.5 Retrieve data from archive

In this step, all data (e.g. software components, data) of the business process are retrieved from the archive.

3.4.4.6 Setup environment

In this step, the environment is prepared for the redeployment. The required software is installed in the

target environment, the configurations are set and the required data is imported. Tools and components for

validation and verification are installed as defined in the Verification & Validation Plan. Original user roles

and access rights have to be adjusted in order to comply with the current environment. In order to protect

sensitive data and services of the redeployed process, new or updated security mechanisms have to be

installed.

3.4.4.7 Perform re-execution

In this step the redeployed process is executed in the new environment. In order to validate the correct

redeployment of the process the test procedures of the Verification & Validation Plan are executed. During

this process all significant properties of redeployed business process are gathered.

3.4.4.8 Verify results

Finally, the measurements taken in the previous step are verified. The Verification & Validation Plan defines

acceptable ranges for the measurements for the evaluation criteria. As shown in Figure 13, if the redeployed

process fails to fulfil certain criteria, the Assessment of Redeployment Alternatives (as described in Section

3.4.4.4) can be re-initiated to adjust the redeployment (e.g. use of other tools, hardware, etc.).When the

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 69

Copyright TIMBUS Consortium 2011 - 2013

results of the verification are positive, the redeployed business process can be used productively. The

following table provides a specification of the above-discussed process steps.

Retrieve

business

process from

archive

Input Archive

Output Retrieved business process description

TIMBUS

Architecture
Preservation Repository

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

C: Risk Manager

Description
In the first step of the redeployment the description of the preserved

business process is retrieved from the archive.

Capture

redeployment

environment

Input Redeployment environment

Output CMI of the redeployment environment

TIMBUS

Architecture
Acquisition Module: Properties Extractor

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

C: Legal expert, regulator

Description
Collects all information about the redeployment environment, e.g. IT-

infrastructure, organisational and legal aspects.

Gap analysis Input
Retrieved business process from the archive and CMI of the redeployment

environment

Output Gap report

TIMBUS

Architecture
Preservation Expert Suite: Preservation Log Gap Detector

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
The description of the business process contains the infrastructure that it

requires for redeployment. The extracted model of the redeployment

environment describes the available infrastructure. The Property Gap

Detector identifies matches of the components and missing artefacts for the

redeployment. The gap analysis is not limited technical aspects

organisational as well as legal and contractual aspects need to be analysed.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 70

Copyright TIMBUS Consortium 2011 - 2013

Redeployment

alternatives

assessment

Input Gap report

Output Redeployment plan

TIMBUS

Architecture
Redeployment Planner, Verification and feedback component

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
This step is responsible for assessing and selecting the best redeployment

strategy for the setting. The redeployment procedure defines all the

required actions needed for redeploying the business process in the

redeployment environment. Based on the gap analysis the plan needs to be

adjusted for the current environment. The result is a list of actions,

describing how to setup of the environment and guiding the installation of

additional software services (e.g. emulators) in order to redeploy the

process. The redeployment plan also addresses organisational aspects, for

example the roles used in the preserved business process that need to be

set up, as well as the assignment of roles with their specified required on

competences and privileges.

Retrieve

required data

from archive

Input Redeployment plan

Output Retrieved business process data including software, configuration, and

working data (such as database tables with business date)

TIMBUS

Architecture
Preservation repository

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
After the redeployment planning the data, software and configuration of

the business process are retrieved from the archive.

Setup

environment

Input Redeployment plan

Output Redeployment environment

TIMBUS

Architecture
DP Engine: Redeployment Executor

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 71

Copyright TIMBUS Consortium 2011 - 2013

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
In this step the environment is instantiated for the redeployment, according

to the redeployment plan. The required software is installed, the

configurations are set and the data are imported. Tools and components for

validation and verification are installed as defined in the Verification &

Validation Plan. Examples are the deployment of software, databases,

virtualised machines, and the recovery of data.

Perform

re-execution

Input Instantiated environment

Output Redeployed business process and monitoring log

TIMBUS

Architecture
Redeployment executor, execution monitor

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
In this step the redeployed business process is executed. In order to verify

the correct redeployment of the process, the test procedure defined in the

Verification & Validation Plan is executed and measurements are taken.

Verify result Input Monitoring measurements from the re-execution step

Output Validation result of the redeployed business process

TIMBUS

Architecture
Preservation Log Gap Detector, Verification and feedback component

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
In the last step the execution of the business process is validated. Data

captured from the original process are compared against the data extracted

from the redeployed process. Deviations in the execution are detected and

analysed.

Decision

about valid

redeployment

Input Validation of the redeployed BP

Output Yes/No

TIMBUS Verification and feedback

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 72

Copyright TIMBUS Consortium 2011 - 2013

Architecture

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

I: Process Owner

Description
If the redeployed business process does not fulfil the Verification &

Validation requirements, identified inconsistencies are reported back to

Redeployment Alternatives Assessment step for the adjustment of the

redeployment process (shown in Figure 13). If the validation result of the

redeployment is positive, the process owner is informed that the business

process can be used productively.

3.4.5 Monitoring and Review

Figure 14: TIMBUS Process including Monitoring

Monitoring and reviewing ensures that the archived business process is adaptable to the requirements of a

changing environment over time. Two types of monitoring are relevant for the preservation of business

processes: that the process is compliant with the legislation and organisation’s preservation objectives, and

that the dependencies and requirement of the preserved process are valid. The monitoring from the risk

management perspective is described in Section 7.4.5 of [24]. The monitoring process in this document

describes the data gathering for the risk monitoring and part of the decision taking that overlaps with the

monitoring process described in [24]. The gathered data are fed into the monitoring process of the risk

management as shown in Figure 14. The responsibilities of roles for monitoring are defined in Table 6.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 73

Copyright TIMBUS Consortium 2011 - 2013

Table 6: RACI for Monitoring of Preserved BP

Monitoring of
Preserved BP

Process Owner
 Process Operator

Technology Manager

Technology Operator

Preservation Manager A

Preservation Operator R

Executive Manager

Operational Manager

Risk Manager I

Legal Expert

Auditor

Regulator

We identified two types of monitoring of the preserved business process. The first type is the monitoring of

the context and requirements of the source environment as described in Section 3.4.5.1. The archived

business process needs to be checked against changes of preservation’s requirements in the institution.

The second type, described in Section 3.4.5.2, monitors the requirements of the preserved process for a

redeployment environment and the implementation of the archived business process. The archived business

process requires specific infrastructure to be redeployed, thus this needs to be monitored to ensure the

availability of the process.

3.4.5.1 Monitoring of business process context in source environment

P
re

s
e

rv
a

ti
o

n
 O

p
e

ra
to

r Monitoring business process in source environment

Retrieve

business

process from

archive

Acquisition

business

process context

Gap analysis

P
re

s
e

rv
a

ti
o

n

M
a

n
a

g
e

r

Assessment

Preservation

Approaches

Figure 15: Monitoring of business process context in source environment

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 74

Copyright TIMBUS Consortium 2011 - 2013

The context of a process can change over time. The context specifies amongst others the motivation,

requirements, goals and obligation for the preservation. The context used to plan and implement the

preservation solution for the business process needs to be monitored against changes in the preservation

requirements. The preserved business processes needs to be verified against changed or new requirements

on a regular basis. In case of non-conformance with the requirements, adaptations and modification of the

archived business process needs to be performed. The process to monitor the requirements in the source

environment is shown in Figure 15. Changes in the context have different causes, e.g. legal obligations or

new re-use scenarios for the business process. Also, in case that the process is still running, new

implementation and improvement of the process in the source environment can require updates of the

archived business process.

The process shown in Figure 15 starts with the retrieval of the description of the archived process from the

archive. The description contains the documentation of the preserved process and artefacts created during

the planning phase such as preservation requirements, context model.

In the second step, the current context from the source environment is captured including the current

requirements, obligations and motivation for the preservation of the process. If the archived business

process is still running in the environment the process is captured again and can be compared with the

archived process.

In the last step, a gap analysis is performed comparing the context of archived process and the current

context in the source environment. Identified discrepancies are evaluated. If the preserved process does not

meet the current requirements a revision of the preservation solution needs to be triggered (as show in

Figure 15).

Retrieve

business

process

from archive

Input Process identifier

Output Retrieved business process model

TIMBUS

Architecture
Preservation Repository

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

C: Risk Manager

Description
In the first step of the monitoring of business process in the source

environment the description of the preserved business process is retrieved

from the archive.

Acquisition

business

process

context

Input Source environment

Output CMI of the business process in source environment

TIMBUS
DP Agent Module, DP Acquisition Module, Legal Life-Cycle Module,

Preservation Exert Suite

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 75

Copyright TIMBUS Consortium 2011 - 2013

Architecture

Stakeholder

involved

R: Preservation Operator

A: Preservation Manager

C: all other stakeholder

I: Risk Manager

Description
The current context of the preserved business process is captured and

documented including current preservation requirements, obligations. If the

archived process is still running in the source environment the process itself is

captured as well.

Gap analysis Input
Retrieved business process description from the archive and CMI of the

source environment

Output Gap report

TIMBUS

Architecture
Preservation Expert Suite: Preservation Gap Detector

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
The context of the preserved process is compared to the current context.

Discrepancies are identified and assessed. If the archived process does not

meet the current requirements the Assessment of Preservation Approaches is

triggered as show in Figure 15 to adjust the preservation solution.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 76

Copyright TIMBUS Consortium 2011 - 2013

3.4.5.2 Monitoring of preserved business process

Figure 16: Monitoring of preserved business process

Actively monitoring the dependencies and requirements of a preserved process is required to ensure the

possibility for redeploying the process on current infrastructure. The dependencies include infrastructure

and components that are required for redeployment, including for example, specific hardware, software or

operating systems. Besides the monitoring of the dependencies, the dry-run execution of redeployment

procedure on a regular basis is recommended. Frequent tests of the redeployment procedure help to

identify practical problems and potential discrepancies of the preserved process.

The used technology for preservation and redeployment should be reviewed from time to time. New

versions of the used tools and technology can improve the preservation solution of the business process.

The process for monitoring and review of preserved business process is shown in Figure 16. The process

steps are similar to the redeployment process described in Section 3.4.4. For the review and test of the

redeployment, the process is not re-instantiated to full extent. Parts of the process and sample data are

selected for the test. The process starts with the retrieval of the description of the archived business process.

The characteristics and available components of the redeployment environment are captured and

documented in the context model. A gap analysis of the required environment for the archived process and

the current available environment identifies deviations. Examples for gaps are technical environments that

were required to run archived software, or required skills of personal to run the process, which have now

changed or are no longer available. The findings of the gap analysis are assessed. In case of significant

deviations the preservation of the process needs to be adjusted. Thus, the planning phase is triggered as

shown in Figure 16. The procedure can also be used to review the technologies used in the preserved

archive. Update of technology used and tools of the preserved business process can improve the

compatibility to current infrastructure and prevent technological obsolescence. The first three steps of the

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 77

Copyright TIMBUS Consortium 2011 - 2013

monitoring process as shown in Figure 16 should be done on a regular basis to review the external

dependencies and the technology used by the preserved business process.

By doing a test-wise redeployment of the business process practical problems and discrepancies of the

process and the redeployment procedure can be detected. The results of the monitoring and review process

are reported to the risk management as shown in Figure 14. The table below summarizes the process steps

need to monitor the preserved process.

Retrieve

business

process from

archive

Input Process identifier

Output Retrieved business process model

TIMBUS

Architecture
Preservation Repository

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

C: Risk Manager

Description
The description of the preserved business process is retrieved from the

archive.

Capture

redeployment

environment

Input Redeployment environment

Output CMI of the redeployment environment

TIMBUS

Architecture
Agent Module

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description Collects all information about the current redeployment environment.

Gap analysis Input
Retrieved business process from the archive and CMI of the redeployment

environment

Output Gap report

TIMBUS

Architecture
Preservation Expert Suite: Preservation Log Gap Detector

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 78

Copyright TIMBUS Consortium 2011 - 2013

Description
The description of the process specifies the infrastructure required to

redeploy the process. The extracted model of the redeployment

environment describes the available infrastructure. The Property Gap

Detector identifies matches of the components and missing artefacts for the

redeployment. If substantial discrepancies are identified the Assessment

Preservation Approach process is triggered to update the archived BP.

Within the gap analysis the used technologies and tools of the archived

process can be reviewed. Updates and use of new technologies can counter

technological obsolescence of the archived process implementation. The

first three steps of the process can be used for regular review of the

external dependencies and used technologies. The results of the analysis

are reported to the risk management. The complete monitoring process

describes the test wise redeployment of the process.

Plan

redeployment

Input Gap report

Output Redeployment plan

TIMBUS

Architecture

Preservation Expert Suite: Redeployment Planner, Verification and

Feedback

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
A full review of the archived process includes the redeployment in a test

environment. The redeployment planner is responsible to assess and select

the best redeployment strategy for the setting. The redeployment plan

describes the match between the preserved business process and the

current environments. It generates a list of action that describes the setup

of the environment and the instantiation of the process.

Retrieve

required data

from archive

Input Redeployment plan

Output Retrieved business process data

TIMBUS

Architecture
Preservation repository

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
The process data, software and configuration are retrieved from the

archive.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 79

Copyright TIMBUS Consortium 2011 - 2013

Setup test

environment

Input Retrieved business process and redeployment plan

Output Instantiated test environment

TIMBUS

Architecture
DP Engine: Redeployment executor

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
In this step the environment is instantiated according to the redeployment

plan. The required software is installed, the configurations are set and the

data imported. Tools and components for validation and verification are

installed as defined in the Validation & Verification Plan. Examples are

deployment of software, databases, virtualised machines, and installation of

data.

Perform

test re-

execution

Input Prepared test environment

Output Redeployed process and monitoring log

TIMBUS

Architecture
Redeployment executor, execution monitor

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
In this step the redeployed process is test-wise executed. In order to verify

the correct redeployment of the process, the test procedure defined in the

Verification & Validation Plan is executed and measurements are taken.

Verify result Input Monitoring log of original and redeployed process

Output Validation of the redeployed business process

TIMBUS

Architecture

Preservation Expert Suite: Preservation Log Gap Detector, Verification and

feedback

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

Description
In a last step the execution of the business process is validated. Data

captured from the original process are compared against the data extracted

from the redeployed process. Deviations in the execution are detected and

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 80

Copyright TIMBUS Consortium 2011 - 2013

analysed.

Decision

about valid

test

redeployment

Input Results of the verification of the redeployed business process

Output Yes/No (list of significant discrepancies in case of no)

TIMBUS

Architecture
Preservation Expert Suite: Verification and Feedback

Stakeholder

involved

A: Preservation Manager

R: Preservation Operator

I: Process Owner

Description
Identified inconsistencies and problems are reported to the Assessment

Preservation Approach process to update the archived business process for

the current redeployment environment (as shown in Figure 16).

3.5 Architectural view of the TIMBUS process

This section presents the architectural view of the TIMBUS processes, specifying the implementation and

support for the processes by the TIMBUS architecture. The TIMBUS architecture, presented in [6], consists of

six modules providing services to support the preservation process. The design of the architecture was

driven by the requirements of the use cases. ArchiMate [8] is used to present the architectural view of the

TIMBUS process. It allows modelling the different layers of enterprise architecture including business,

application and technology. The concept of viewpoints [8] can be applied to the models in order to highlight

different aspects and concerns of the model (e.g. different level of detail or components). A short

introduction into the concepts of ArchiMate is given in [22]. Figure 17 shows the layered overview of the

TIMBUS process including business and application layer of the enterprise architecture. It shows the business

services that are provided and used by the three actors (Risk Manager, Preservation Manager and

Preservation Operator). A detailed overview about stakeholders’ involvement and responsibilities of the

TIMBUS process is presented in Section 3.4.1. The five business services are realised by the five core business

processes of TIMBUS (Risk Management, Acquisition of business process context, Assessment of Preservation

Approaches, Preserve and Redeploy). Figure 17 further shows the use of the six TIMBUS application services

(defined in the TIMBUS architecture) by the business processes. A detailed view of the architectural support

for the processes is shown in the following sections.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 81

Copyright TIMBUS Consortium 2011 - 2013

Figure 17: Architecutral Layered View of the TIMBUS Process

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 82

Copyright TIMBUS Consortium 2011 - 2013

3.5.1 Risk Management

The Risk Management process is described in Section 3.4.2.1 and in more detail in [24]. Figure 18 shows the
process steps of the Risk Management process. The supporting components of the Intelligent Enterprise Risk
Management Module (iERM) are shown in Figure 18.

Figure 18: Risk Management - Application Usage View

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 83

Copyright TIMBUS Consortium 2011 - 2013

3.5.2 Acquisition of business process context

The Acquisition of the business process context defined in Section 3.4.2.2 uses the services of four

architectural modules (DB Agent, Acquisition, Legal Life-Cycle Module and Preservation Expert Suite). Figure

19 shows the use of the process steps.

Figure 19: Acquisition of business process Context Application Usage View

3.5.3 Assessment of Preservation Approaches

The Assessment of Preservation Approaches process is mainly supported by the Preservation Expert Suite as
shown in Figure 20. The DP Engine is required to test the approach for the evaluation of the preservation
plan as specified in Section 3.4.2.4.3.

Figure 20: Assessment of Preservation Approches - Approaches Application Usage View

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 84

Copyright TIMBUS Consortium 2011 - 2013

3.5.4 Preservation

Services of the DP Agent, DP Engine, Preservation Expert Suite and IERM are used by the process steps of the

preserve phase. The service of the Preservation Repository is used for archival storage as shown in Figure 21.

Figure 21: Preserve - Application Usage View

3.5.5 Redeployment

The services of the TIMBUS architecture used by the redeployment process are shown in Figure 22. Key

services are the Redeployment Planner and the Redeployment Executor. The verification of the

redeployment results is supported by the Validation and Feedback component, the Preservation Log Gap

Detector and the Execution Monitoring service. The monitoring and review process of TIMBUS presented in

Section 3.4.5 uses the same architectural services as the redeployment process.

Figure 22: Redeployment - Application Usage View

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 85

Copyright TIMBUS Consortium 2011 - 2013

3.6 Use Case

The TIMBUS process to digitally preserve a business process described in Section 3.4 provides a framework

that can be adopted and adjusted to the needs of specific settings. The framework was designed considering

the requirements of the TIMBUS use cases (cf. [1] and [2]). The TIMBUS process provides a flexible and

extensible framework that can be instantiated for all kinds of business processes. In this section, examples

for the implementations of the process framework for specific process steps are presented using the TIMBUS

use cases. Section 3.6.1 outlines the TIMBUS process for the civil engineering use case of WP8 and Section

3.6.2 for the eHealth use case of WP9.

3.6.1 WP8 Industrial Project: Civil Engineering Infrastructure

The civil engineering use case deals with the monitoring process of large civil engineering structures such as

dams. LNEC24 is required by the Portuguese national legislation to monitor the structural safety of the

structures. The business process in this use case covers the data gathering and the analysis for monitoring of

the building structure by using the GestBarragens system. A detailed description of the use cases is given in

[1]. The data analysis consists of multiple processes. For the TIMBUS use case seven core processes are

selected and shown in Figure 23.

Figure 23: GestBarragens main processes overview

In order to run the TIMBUS processes, the stakeholders as defined in Section 3.3.2 need to be assigned to

actors at LNEC. The organisational structure of LNEC is shown in Figure 24 and described in [1]. Table 7

presents the assignment of the stakeholders of the TIMBUS framework to the stakeholders at LNEC, which is

visualised in Figure 25. The Functional Department for this use case is Concrete Dam Department. The

mapping is not a 1:1 match. Some stakeholders have one or more roles in the TIMBUS process. The Process

Operator for BP-SD-1, BP-SD-2, BP-SD-3 and BP-SD-5 is the Concrete Dam Department technician while for

24

 http://www.lnec.pt/

 analysis Main Processes Overview

Other ProcessesAccess ProcessesUpload Processes

BP-SD-1 - Central Data

Validation

BP-SD-2 - Central Data

Transform

BP-SD-3 - Central Data

Store

Local Data Gathering

BP-SD-4 - Access Data

BP-SD-5 - Modify Data

BP-SD-6 - Data

Synchronization

BP-SD-7 - Offline Data

Backup

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 86

Copyright TIMBUS Consortium 2011 - 2013

BP-SD-6 and BP-SD-7 it is the IT Technician. BP-SD-4 is operated by the Concrete Dam Department technician

and the structure owner. The matching of the TIMBUS stakeholders is important to have all relevant

stakeholders involved.

Figure 24: LNEC Organization Diagram

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 87

Copyright TIMBUS Consortium 2011 - 2013

Figure 25: LNEC stakeholders

Table 7: Stakholder assignment

TIMBUS Framework LNEC

Process Owner Concrete Dam Department Researcher,

IT Manager

Process Operator Concrete Dam Department technician

Structure Owner, IT Technician

Technology Manager IT Manager

Technology Operator IT Technician

Preservation Manager IT Manager

Preservation Operator IT Technician

Executive Manager Board of Directors

Operational Manager Head of the Concrete Dams Department,

Head of the IT Department

Risk Manager Head of the Concrete Dams Department,

Head of the IT Department

Legal Expert Finance and Property Services

Auditor (external) Authority

Regulator (external) Government or Parliament

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 88

Copyright TIMBUS Consortium 2011 - 2013

As the TIMBUS process is driven from Risk Management, a detailed analysis of the risk associated with

business processes is performed in a first step. In order to analyse the risks of the process, the context

information of the process needs to be gathered (see Section 3.4.2.1). Figure 26 shows the context

acquisition process for this use case.

Figure 26: LNEC Acquisition of business process context

Decision:

business

process well

specified?

Input Process descriptions and specification

Output Process is well specified. Specification can be found in [1] Chapter 5.8, BP-

SD1 - BP-SD7 and Appendix of [1]

 Stakeholder

involved

R: IT Manager

A: IT Technician

 Description
In the first step the process specification and descriptions are checked for

completeness. In this use case the process are well specified and

documented. The process description is summarized in section 5.8 and in the

appendix of [1]. The overview diagram of the six processes is shown in Figure

23. No further refinement is required and the process to identify the

stakeholders is triggered.

Identify

stakeholders

Input Documentation of BP

Output LNEC stakeholder description [1]

Stakeholder

involved

R: IT Manager

A: IT Technician

C: Concrete Dam Department Researcher

Description
The stakeholders involved and their preservation concerns are documented.

For the first iteration of the context acquisition the risk management is

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 89

Copyright TIMBUS Consortium 2011 - 2013

focused on the identification of associated risks of the business processes.

The stakeholder can be seen in Figure 25. The concerns of the directors and

the board of directors are documented.

Modelling of

context

model &

dependencies

Input Source environment

Output Document [1] (Chapter 5 and 7)

Stakeholder

involved

R: IT Manager

A: IT Technician

C: all other stakeholders (e.g. Concrete Dam Department Researcher,

Structure Owner)

Description In order to identify and analyse risks of the processes, obligations, guidelines

and principles that apply to the processes are of interest. Document [1]

describes the architecture principles, data management policies, goals and

legal obligations of the processes. The fundamental concepts of the

implementation are captured as well.

Create views Input Output of the previous process

Output LNEC process Views (as described in document [1], Chapter 5 and 7)

Stakeholder

involved

R: IT Manager

A: IT Technician

Description
The requirements and obligation for the processes are summarized in tables

in [1]

The risk management process is described in detail in [27]. It presents the process of identifying, analysing

and evaluating risks. Many identified risk with a high risk level were driven by obligations that need to be

fulfilled by LNEC (e.g. LR01 – Non-compliance with General Legal Obligations, LRP01 – Non-compliance with

Data Protection Regulations, LRP03 – Non-compliance with Laws and Regulations due to Law Changes).

Other risks deal with reputation and integrity of information at LNEC (SR01 – Reputation Loss/Loss of Trust

and OR07 – Loss of Integrity of Information, OR11). Digital preservation is a possible solution to mitigate

some of these risks. The Assessment of Preservation Approaches for the LNEC use cases follows the TIMBUS

framework as described in Section 3.4.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 90

Copyright TIMBUS Consortium 2011 - 2013

Acquisition

business

process

context for

Digital

Preservation

Input CMI, business goals, preservation policies

Output enhanced CMI

Stakeholder

involved

RA: IT Manager

C: all other stakeholder

Description
The architectural view of the process is shown in Figure 27. It shows the

components and relationships across the different layers of the process. It

shows an aggregated view of the processes as well of the technical

implementation of the supporting information system. More detailed views

of the process are shown in the Appendix of [1]. The TIMBUS context model

instance of the LNEC use case with domain-specific model is developed as

part of Task 4.2 + 4.4 and WP8. A first outlook on the domain-specific model

for the sensors involved in the process is given in [22].

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 91

Copyright TIMBUS Consortium 2011 - 2013

Figure 27: Architectural, Layered View of the LNEC process

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 92

Copyright TIMBUS Consortium 2011 - 2013

Document

preservation

requirements

Input CMI, business goals, preservation policies

Output List of preservation requirements for the business process ([1] Section 7.5)

Stakeholder

involved

R,A: IT Manager

C: all other stakeholders

Description
Document [1] presents the process to identify the preservation requirements

for a potential preservation solution. Driven by goals (shown in Figure 28),

reuse scenarios, obligations, policies and principles the specific requirements

of the process are identified. They are categorized into functional and non-

functional requirements.

Abstraction

of process

context

Input CMI, preservation requirements

Output Finalized CMI

Stakeholder

involved
RA: IT Manager

Description
The final CMI of the LNEC use case is under development. The current version

does not need further abstraction as the model was designed especially for

preservation.

Develop
Input CMI, preservation requirements

Figure 28: Goals identified for preservaing the dam monitoring [1]

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 93

Copyright TIMBUS Consortium 2011 - 2013

Preservation

Plan
Output List of evaluated preservation plans

Stakeholder

involved
RA: IT Manager

Description
The identification of the preservation strategies for the LNEC processes is

currently carried out in the TIMBUS project. The work of TIMBUS, in

particular WP8 and tool development in WP 6 will address the development

of a preservation solution for these processes. Research was done to identify

potential strategies for the process and the underlying information systems.

For the sensors involved in the process, simulation can be a potential

strategy, similar to the mock-up of the web services approach described in

Section 3.4.2.4.2. The LNEC GestBarragens information system implements a

number of components for managing technical documents and analysis tools

for physical and mathematical models. A virtualisation of the complete

system helps to capture the required components and its dependencies. For

the capturing of the system’s data sources (e.g. the Oracle DBMS that

supports the LNEC processes), different approaches are currently being

analysed.

This section provided an initial description of the framework instantiation of the planning phase for the LNEC

use case. More examples of the instantiation are shown in [1] and [27]. The development of a preservation

plan is currently done within the project. The preservation and redeployment phase of this use case is

planned as described in this document without modification or alternations.

3.6.2 WP9 eHealth

The eHealth use case describes a business process for searching and discovering adverse drug events (ADE).

A detailed description of the use case is provided in [46]. Adverse drug events describe any injury caused by

medication (whether drugs were used at normal dosage and/or due to overdose). The business process

provides a complete solution for discovery and search of such ADE rules. The search functionality is used by

doctors or pharmacists in the drug prescription process via on-line services. In case of incorrect

recommendations of the systems, the prescribed drugs can cause serious complications to the patient

health. Lawsuits are potential consequences of incorrect rules. In order to investigate on incorrect ADE rules

the discovery process needs to be reconstructed and rerun in the future. The redeployed process therefore

needs to be executed on the same hardware/software stack and use the same input data for the discovery

process.

The process is highly distributed across three companies as shown in Figure 29. The three companies are

DrugFusion, DataMole and SemanTech. Two external services are used by the process Central Medical

Repository for Drug Prescriptions (CMRDP) and Pharmaceutical Company (PC).

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 94

Copyright TIMBUS Consortium 2011 - 2013

The key driver for the preservation of the process is DataMole. They are providing a discovery service for

new ADE rules by using the unique discovery algorithm. The algorithm is under constant changes due to the

introduction of new features, bugs fixes or aligning with new drug taking guidelines. With the preservation of

the process DataMole wants to document and prove that their discovery algorithm worked correctly for all

rules that were identified. The motivation for the preservation is to prevent potential lawsuits against the

company for incorrect rules provided to DrugFusion. A critical task in this use case is the identification of the

relevant functionality and components in the distributed environment that need to be preserved. The use

case is in an early stage of the preservation process. The TIMBUS framework can be applied on the use case

without adoption of the process flow. A refinement of the process specification was triggered and the final

documentation is provided in [46]. Figure 30 shows an overview of processes involved in the eHealth use

case. The next step is the identification of the stakeholders and the creation of a context model. TIMBUS

deliverable D9.3 [46] presents very detailed models about the implementation of the information system

involved in the business process. It shows the software components and the underlying infrastructure of the

three companies. The communication between the three companies is mainly implemented with Web

services. Figure 31 shows the hardware and infrastructure technologies of the business process. For the

context model of the use case two domain-specific ontologies (DSO) are currently being developed: software

DSO and licence DSO. The software DSO specifies the software implementation including packages,

dependencies and communication between the packages. The licence DSO provides detailed information

about the software licences involved in the business process. The two domain specific ontologies allow for a

detailed model of the business process context and further support the preservation of the process. The

detailed information about the software implementation can be used to identify potential preservation

strategies for the system involved in the process. The DSOs are present in deliverable D4.3 Dependency

Models Iter. 2 [22].

TIMBUS deliverable D9.3 [46] outlines a first set of risks, identified based on the business process

documentation and the current state of the context model. The process framework is not just a strict step by

step process. It rather suggests phases of actions with defined output. Before a certain phase can be finished

and the next phase can be started all actions defined in the current phase have to be executed and all

required information has to be gathered and documented. Tasks in the same process phase can be started at

the same time. Processes build on the results of previous steps, but an initial start of preceding process steps

can provide useful feedback to previous steps. The eHealth use case shows a good example for this feedback

loop that is not explicitly modelled in the process framework (the feedback loop is for the evaluation of the

preservation plan as shown Section 3.4.2.4). A first risk analysis before the final version of the context model

has been completed. A number of risks were identified, mainly concerning non-compliance with legal

obligations, licences and contracts of the process. The identified risks can raise requirements for the context

model. In the case of the eHealth process, more detailed information about the legal aspects of the context

need to be gathered and documented in the context model. Moreover, [46] provides a set of preservation

requirements for the eHealth process. The current version mainly addresses technical requirements for a

potential preservation solution.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 95

Copyright TIMBUS Consortium 2011 - 2013

The work on the use case will be continued in WP9 following the process framework presented in this

document. A first version of the context is finished and will be further extended by DSO specifying the

domain specific aspects in more detail. The first set of identified risks shows that a preservation solution can

be a vital strategy that helps mitigate many compliance risks regarding law and contracts. Virtualisation of

systems can be used to capture and preserve the services provided by the information systems. A key aspect

of the eHealth use case are the distributed services used that are operated by three different companies.

The use of external services raises a challenge for the long term preservation. Escrow agreements as

described in Section 4 can provide a potential solution mitigating the risks imposed by external services.

Figure 29: High level diagram of the e-Health business process [46]

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 96

Copyright TIMBUS Consortium 2011 - 2013

Figure 30: eHealth Business Layer: General Overview

Figure 31: eHealth Technology Layer: General Overview

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 97

Copyright TIMBUS Consortium 2011 - 2013

3.7 Summary

The TIMBUS process presented in this work provides a flexible framework for preserving business processes.

Our Digital Preservation approach for business processes is driven by a risk management perspective. The

TIMBUS framework is divided into three phases: plan, preserve and redeploy. The planning phase includes

the acquisition of the process context, describing all artefacts that are relevant for the process including

technical, organisational and legal aspects. A risk assessment identifies and evaluates risks associated with

process in the organisation. A generic enterprise risk management process is used based on the ISO 31000

[4]. TIMBUS focuses on Digital Preservation as risk mitigation strategy for identified risks. TIMBUS allows

assessing different preservation strategies during the planning phase. In order to develop a preservation

strategy, the context of a business process needs to be acquired. TIMBUS developed a context model that

provides a basic structure that can be extended with domain-specific knowledge. The model allows capturing

the context of the process including technical, organisational and legal aspects across different layers such as

business, application and infrastructure layer. It further enables to model the relationships and

dependencies of the components. The holistic model of the process can be used to identify components and

concepts of the process that need to be preserved over time to meet the preservation requirements. A

combination of preservation strategies can be used to preserve the significant properties of the process.

We discussed different approaches to preserve the processes and the underlying information systems. Many

well established approaches such as migration or emulation serve as examples. The use of external services

is problematic from a preservation perspective, as the availability of these services cannot be guaranteed.

TIMBUS developed mitigation strategies for this threat. Mock-up services and escrow contracts with third

party providers can provide preservation solution for external services. Software escrow is discussed in more

detail in Section 4.

TIMBUS allows comparing different preservation strategies. Hence, cost-benefit considerations support the

selection of appropriate risk mitigation strategies. The preservation phase specifies the processes to execute

the selected preservation strategy. The preservation process requires the acquisition of the process data

from the source environment, the execution of required preservation actions, and the migration of the

process into an archival format. TIMBUS allows validating the success of the preservation process. In order to

assess the later redeployment, validation data is captured from the source environment. Accompanying

quality checks ensure the correct execution of the preservation.

The last phase of the TIMBUS process is redeployment. It defines the reactivation of a preserved business

process in a new environment. Beside the technical redeployment of the process, organisational and legal

aspects of the process need to be reactivated and adjusted to the changed organisational structures and

legal conditions. The redeployed business process is then verified against performance measurements of the

original process.

The here presented TIMBUS framework specifies the fundamental steps and actions that need to be taken

for the long term preservation and redeployment of a business process. In order to support a wide range of

business processes one requirement to the framework was to provide flexibility for implementing the

process steps in a domain-specific scenario. We took this requirement carefully into consideration when

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 98

Copyright TIMBUS Consortium 2011 - 2013

designing the TIMBUS process framework and provide the needed flexibility. The process defines the

required action steps including input, outputs and responsibilities. It guides the process by providing

explanations, examples and references to related work. The documentation of the framework focuses on the

specific aspects of process preservation with less focus on data centric views of preservation that have been

addressed by a number of other projects [47].

The design of the framework was driven by the TIMBUS use cases. The TIMBUS process can be adapted to

the individual needs of a setting. The various implementations and characteristics of business processes

need to be considered for preservation. The framework should not be seen as a rigid and closed step by step

instruction. TIMBUS is rather a specification of required actions and defines what kind of information is

required for secure preservation and successful redeployment. It provides a set of process steps that need to

be executed during a specific phase, but leaves enough space for the requirements of the original business

process. It guides users through the execution of the preservation task by providing recommendations and

examples of supporting tools and methods, but the actual implementation of the process and the used

methods depends on the specific setting. The framework defines information and procedures that need to

be captured, and created for specific phases of the process for further processing. The documentation of the

process highlights specific aspects that need to be considered, such as security features or dependencies of

components. This ensures that the focus is set on critical tasks. The TIMBUS framework also considers

organisational aspects and responsibilities that allow monitoring and controlling of the execution.

The preservation of complex business processes requires manual work and sound decision taking. The input

of domain experts is required who provide their knowledge for certain steps such as the creation of context

models or preservation plan development. This increases the effort required for the preservation activities.

Within the TIMBUS project, WP6 identifies and develops tools to support and automate parts of the TIMBUS

processes. In this section we further highlighted how specific components of the TIMBUS architecture

support the designed processes for business process preservation. The implementation of the architecture is

addressed in WP6 of TIMBUS.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 99

Copyright TIMBUS Consortium 2011 - 2013

4 Holistic Software Escrow

Like other industries, the IT sector shares the risk of having dependencies to external third parties due to

services being increasingly outsourced. In most cases a mitigation of this risk is accomplished by changing

the relationship to the external partner by its acquisition and integration into the own organisation. A study

by Boston Consulting Group and UBS [48] indicates that nearly one in five of the companies surveyed intends

to undertake at least one acquisition. At least 18% of the respondents stated “Access intellectual property

and R&D” as main driver for mergers and acquisitions (M&A). So these M&A activities bypass the risks

introduced by outsourcing by changing the relationship to the third party. One approach to mitigate the

outsourcing risks without having to integrate the partner into the own organisation is Software Escrow,

which places a trustable third party between the IT partner and his customer [49].

4.1 Introduction

An acquisition of other companies as mentioned above is sometimes unreasonable or not possible. Thus the

only way for companies to acquire the missing knowledge is to outsource tasks to another company. These

Business-to-Business transactions also involve the commerce of intangible goods like software. In these

cases, the consumer of the contract needs software developed for a specific task. For a certain amount of

money he gets the desired program, but due to high costs often only in the form of a license without the

possibility to further maintain and develop the software. Hence it is possible for the developer to license his

product to other companies as well. For commercial software it is common to only hand over the object

code, not the source code including the most valuable trade secrets of the developer. In case the developer

goes bankrupt or refuses to support and maintain his product, the consumer cannot get hold of the source

code for further development. A mitigation of this risk is to make Software Escrow agreements, ensuring the

access to the source code under specific circumstances.

To be able to use the code in the future, all components of the software have to be preserved. The Digital

Preservation part in such a software scenario is therefore of utmost importance. It has to be guaranteed that

each component of the software, which also includes external services like a Web service, is still available

even after it gets handed to the consumer. This includes the deposit of all artefacts that are necessary to

develop the source code. However, deciding on what is necessary and when an artefact fulfils quality

requirements that make it useful for further development, are crucial decisions when agreeing on a Software

Escrow contract. The evaluation of the escrowed material regarding completeness and quality has to

guarantee that maintenance and enhancement of the program will be possible for another developer in the

future without unforeseeable investment from the consumer. Today, commonly used verification methods

(cf. Section 4.3.2.2) examine the deposited material rather superficially. However, without a proper

evaluation of the artefacts, a successful redeployment of the software will be troublesome or even

impossible, e.g. if the source code is incomplete and documentation is missing. Therefore a manual quality

assessment done by the escrow agent will be necessary to guarantee that the software fulfils the desired

quality level. A thorough examination can take long however and may not be feasible due to high costs. A

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 100

Copyright TIMBUS Consortium 2011 - 2013

cost-benefit trade-off can be achieved by supporting the process with automated artefact analysis. Source

code evaluation is already in the focus of common Continuous-Integration tools. However these do not

include analyses in respect to Software Escrow, which extends specific Digital Preservation concerns (e.g.

calls to an outside Web service) or maintainability issues (e.g. the quality of the comments). Thus we

propose a Technical Software Escrow Framework built on the idea of a Continuous-Integration tool. It has to

be able to support a manual review with automatic checks of the deposited software, including source code,

documentation, and all other artefacts necessary for further developing and maintaining the software. The

design of our framework allows dealing with various kinds of artefacts. With its plugin structure it provides

different types of measurement for each artefact, e.g. for checking the readability of comments analysing

the used libraries for code hidden there or their license. If additional checks are necessary the design allows

for extending the framework for these measurements. To support a reviewer examining the deposit material

at the software escrow agent, it highlights artefacts that did not pass a test or exceeded a pre-defined

threshold.

To give a comprehensive overview, we analysed not only technical aspects of Software Escrow, but included

a broad legal point of view as well. For providing a better understanding of the procedure we divided it in

three phases (plan, execution, redeployment). The first phase contains mainly legal aspects on what has to

be considered and agreed on before the actual escrow takes place. The second phase includes the procedure

for the deposit and how to verify the material. Phase three describes the events that precede the release of

the software and the release proceedings from a legal point of view.

The structure of the sections is as follows. First, we will present general concepts of Software Escrow

(Section 4.1.1) and give a short overview of its phases (Section 4.1.2) before each of them will be discussed

in a separate section. Afterwards we will look at what aspects to consider, from a technical (Section 4.1.3)

and legal (Section 4.1.4) point of view. The three phases of Software Escrow will be described in the

subsequent sections in more detail. Section 4.2 contains the planning part, including how to select an escrow

agent (Section 4.2.2), what to consider if contracts already exist (Section 4.2.3) which materials to select for

the deposit (Section 4.2.4), and the rights of the materials (Section 4.2.5). The second phase, the execution

part, is explained in Section 4.3. It contains information on how the deposit is executed (Section 4.3.2) and

explains the verification with the Technical Software Escrow Framework (Section 4.3.3). This section

describes the design of a Software Escrow framework (Section 4.3.3.1) and the components needed for a

holistic evaluation with focus on maintainability (Section 4.3.3.2). The output of the framework is described

as well (Section 4.3.3.3). The third phase, redeployment of the escrowed software in Section 4.4, describes

trigger events for a release and the process that follows them (Section 4.4.2) as well as what information has

to be exchanged between the parties (Section 4.4.3). The related work Section 4.5 contains the background

information of the Technical Framework, including different plugin groups (Sections 4.5.1 to 4.5.4). The

description of a prototype implementation for the Technical Framework follows in Section 4.6 with details

on the CI tool it was built on (Section 4.6.1) and different experiments carried out (Section 4.6.2) in order to

evaluate the framework. In Section 4.7 we conclude the Holistic Software Escrow and give an outlook.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 101

Copyright TIMBUS Consortium 2011 - 2013

4.1.1 Software Escrow

The term Software Escrow agreement originated in the Anglo-American field of law and refers to contractual

agreements, where within the framework of this contract the source code of a computer program and the

relevant materials, which will be described later on, will be deposited at a neutral third party and in case of

the occurrence of one of the contractually established trigger events, the deposit materials have to be

handed over to the consumer.

There can be three escrow parties:

 the consumer, who wants to use the software and safe his investments in it at the same time

 the software developer, who makes the compiled object code available to the consumer and hands

over the sources and all other necessary objects to the escrow agent

 the escrow agent, who has to verify that the deposited material meets the requirements as

contracted, e.g. that all objects are available and accessible, respectively readable. For this three

different verification grades are commonly used, including a standard and full verification and a

bespoken verification that can focus on special considerations. More on this topic can be found in

[50], in its Section 6.5.3.2 – Verification of Deposit Objects – and in [51].

Figure 32 shows an illustration of the relationship between the parties. The numbers denote the course of

events:

1. The consumer gives his requirements for a program to the software developer.

2. Subsequently the developer engineers a suitable program, whose binary and executable files are

delivered to the consumer, whereas the source code, the documentation and everything important

for the development and maintenance of the program are committed to the escrow agent.

3. If an event from the escrow agreement gets triggered (e.g. the developer files for bankruptcy), the

escrow agent hands out the committed software artefacts from step 2 to the consumer.

Figure 32: Relationship between escrow parties

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 102

Copyright TIMBUS Consortium 2011 - 2013

The Software Escrow agreement can contain different trigger events, which will be defined below. The

escrow agreement helps to solve the conflicting interests of the software developer and the software user.

The developer’s algorithm is kept secret while the customer’s investment is protected by allowing him to get

access to the source code and the deposit material under certain circumstances.

The Software Escrow agreement can be a two- or tri-party contract. The contracting parties of the “classical”

two-partied contract are the software developer and the escrow agent for the purpose of depositing the

source code and the relevant materials at the escrow agent. The escrow agent is authorised to hand over the

deposit materials to the software user, who must be named to the escrow agent, in case one of the trigger

events occurs.

Basically there are only two contracts, the Software Escrow agreement between the software developer and

the escrow agent, and the software licence between the software developer and the software user.25 The

Software Escrow agreement is, in this case, a real contract in favour of a third party (the software) user.

Another contract model for Software Escrow agreements is the chain of contracts, where the software

developer signs a contract with the software user, who gains the ownership of the source code and the

relevant materials, and who is obliged to use an escrow agent for the execution of the contract. This means

that the software developer is obliged to hand the software artefacts directly over to the escrow agent. The

software user has the obligation to sign a Software Escrow agreement with the escrow agent. This

agreement regulates the occasions in which the escrow agent is obliged to release the deposited materials

to the software user. However, between the software developer and the escrow agent there exists no

contractual relationship; the developer is only obliged by his contract with the software user to hand over

the material directly to the agent, who carries out the deposit of the source code and the relevant material.

It is also possible to establish a Software Escrow agreement in favour of various software users. The Software

Escrow agreement can be signed in favour of a determined or an undetermined number of software users.

Depending on the specific contracts it can be a two- or tri-party contract.26

As mentioned above, the Software Escrow agreement can also be signed as a tri-party contract. In this case,

the contracting parties are the software developer, the software user and a neutral third party called the

escrow agent. In the earlier years of the use of escrow agreements, the source code was often deposited at a

notary or lawyer. Nowadays, there is a tendency towards using specialized companies as escrow agents,

which have the knowledge to fulfil the relevant contractual obligations to assure the quality of the deposit

material. The escrow agent has the obligation to safeguard the source code and the deposit materials and to

verify them. So it is essential that the Software Escrow agreement contains a list of materials that have to be

deposited by the software developer, specifies what kind of verification must be made, and what the trigger

events are that oblige the escrow agent to hand over the deposit materials to the software user.

Since this contractual constellation is the most common in practice27, the explanations of this work are based

on the tri-party Software Escrow agreement.

25

 Auer-Reinsdorff/Kast, Software Escrow, in Auer-Reinsdorff/Conrad (ed), Beck‘sches Mandatshandbuch IT-Recht

(2011) § 10 Rz 35 ff.
26

 A detailed description of Software Escrow agreements signed in favour of several users is contained in TIMBUS

Project, D4.4: Digital Preservation & Legal Issues – Overview [50].

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 103

Copyright TIMBUS Consortium 2011 - 2013

4.1.2 Phases

The typical life cycle of Software Escrows can – like the general TIMBUS three phase approach described

above in Section 3.3.1 – in turn be broken down into three phases, i.e. escrow planning, escrow execution

and escrow redeployment. A functioning Software Escrow agreement must be aware of all these phases and

provide a contractual solution for all the potential problems threatening their unobstructed execution. The

first phase in the abovementioned life cycle is the escrow planning phase. Software escrows should be seen

in the broader context of risk management and business continuity planning activities respectively [52]. In

the on-going IT outsourcing trend they constitute a mitigation measure minimizing the risk exposure of

enterprises. Escrow agreements are able to support the re-execution of business processes with minimum

time and minimum expenses. Thus the escrow planning phase starts by identifying and analysing the critical

business processes that are depending on the software put into escrow. A cost-benefit analysis can help

locate crucial parts of the software for which escrow is needed. These parts will be evaluated for their

quality in order to determine if they are suitable for further development in the future. The phase finishes by

drafting an escrow agreement based on the findings of the previous steps. In the escrow execution phase the

verification with the Technical Software Framework and the deposit of the materials selected for Software

Escrow takes place. This part also comprises suggestions on the optimised contractual solutions for the

processes executed therein, e.g. the design of a suitable information procedure regarding the deposit of

source code at the escrow agent. The same considerations also apply to the third and last Software Escrow

phase, escrow redeployment. The quintessential task of this phase is the quick release of the escrowed

materials in case a triggering event occurs.

In practice, all of the decisions on the drafting of the Software Escrow agreement, i.e. regarding the concrete

contractual design of the three escrow phases, are made in the escrow planning phase. However, for a

better understanding of the chapter on “Holistic Software Escrow” and in order to improve its readability,

the procedures that, in combination, form the execution phase and the redeployment phase respectively,

are described in detail in the corresponding Sections “Phase II – Execution” (4.3) and “Phase III –

Redeployment” (4.4), not in the Section on the escrow planning phase (4.2).

4.1.3 Technical considerations

When analysing software that has to be put into escrow, an evaluation has to consider different points of

view. General aspects are derived from the knowledge on archiving digital data, digital preservation. Other

considerations deal with the quality in software development, including programming mistakes or bugs. We

will also take a look at the possibility of code obfuscation or code hiding in the following Sections.

27

 Auer-Reinsdorff/Kast in Auer-Reinsdorff/Conrad, § 10 Rz 36; e.g. NCC Group, http://www.nccgroup.com/en/our-

services/software-escrow-verification/software-escrow/types-of-agreements/ (13.3.2013); SES, http://www.s-e-

suk.co.uk/software-escrow/escrow-agreement-options/ (13.3.2013); TÜV Süd, http://www.tuev-sued.de/industrie-

konsumprodukte/dienstleistungen/hinterlegungsservice-escrow/tuev-sued-software-escrow/escrow-agent-

lizenzgeber-lizenznehmer (13.3.2013).

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 104

Copyright TIMBUS Consortium 2011 - 2013

4.1.3.1 General aspects

Software has specific risks that have to be considered for Software Escrow. Direct risks for Software Escrow

include:

 Reading errors on the medium – Due to improper archival of the medium or defects in the files the

entire data or part of it cannot be read.

 Incomplete source code – Without the complete source code a successful compilation will be

impossible.

 Configuration/instructions not available – Without a proper configuration or instruction the

compilation and setup might not be possible.

 Insufficient documentation – Without a good documentation maintenance and development of

software are difficult to impossible.

 Absent licenses – The licenses for libraries or the build environment are needed to make further

development of the software.

 Objects are out of date – To be of value, escrowed software always has to be updated to the same

version that the consumer uses.

To face these problems, completeness and quality of the escrowed artefacts has to be guaranteed.

Completeness begins at defining all important objects of escrowed software. The source code alone is not

enough for a future maintainability or development. Program description, compiler, or documentation are

essential objects for preservation as well. A more exhaustive list of artefacts to preserve can be found in

Section 4.2.4. When completeness is guaranteed, the quality of each object has to be evaluated.

Quality includes that data is kept up to date and that its maintainability is taken into account. Other than

common material put into escrow, software development is a continuous process, constantly changing the

Figure 33: Software release cycle with escrow

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 105

Copyright TIMBUS Consortium 2011 - 2013

deposited material due to bug fixes or updates. Thus it is important to state in the escrow agreement a

regular update of the escrowed artefacts, simultaneously done with the delivery of the binary program

update to the consumer. The responsibility of making this update lies on the side of the developer, who has

to include this step in his development process. The graphic in Figure 33 depicts this process.

Each object has to be of sufficient quality, e.g. the program source code has to follow standards to be

understandable by another developer. To verify this quality, an escrow audit framework will be built. With

this, a semi-automated or automated artefact review will be possible, thus providing support to a manual

review at the escrow agent. The benefit for the consumer is a large coverage of tested artefacts and their

quality assurance. The developer, on the other hand, does not have to hand over his code to the customer

directly. Tests are done by an independent third party.

4.1.3.2 Source code considerations for escrow

Regular software maintenance is already a non-trivial issue. But when it comes to Software Escrow, which

includes the knowledge transfer for future maintenance activities conducted by a potential third party,

preparing a container with software artefacts for this very event becomes a complex task. Therefore the

deposited artefacts have to be understandable, especially the source code which represents the core

artefact.

When looking at poor quality source code from the view of a Software Escrow customer two different views

come up. On one hand, one has to deal with unintentional bugs, which occur frequently during

development, and on the other hand, shortcomings created on purpose have to be considered. For the first

kind, according to [53], where the authors dealt with a large number of bugs during their research for their

bug tracking tool, these can be amongst others:

 Mistakes: Even the best programmer is not immune against simple mistakes like implementing a null

pointer exception in Java by using the && operator instead of ||, as the authors of [53] have found

many times.

 Language latent bugs: Bugs that do not affect the correct execution of a program until a particular

program behaviour occurs, because the compiler cannot check them (e.g. requirements for a

serializable class in Java).

 Threads: Concurrency bugs are common in Java because programmers tend to use the method

without properly regarding the constraints that come with threading.

Unintentional poor quality code has been a research topic for a long time, thus dealing with these kinds of

bugs includes common approaches of established tools. Experimental approaches for analysing the quality of

projects with respect to Software Escrow can be found in Section 4.6.2. Dealing with intentional poor quality

documentation will be content of the readability experiments, which can be found in Section 4.6.2.1.2.

Dealing with purposeful shortcomings is more difficult. It implies that a developer does not want to hand

over his code to the Software Escrow agent for various reasons. He might want the customer to be

dependent on him, and thus make the source code useless for a third party. Concealing source code without

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 106

Copyright TIMBUS Consortium 2011 - 2013

affecting functionality will be the topic of the following Sections. Another reason for the developer is, that

giving away the source code goes along with keeping a certain degree of quality, including a clear structure,

good documentation, or best coding practices. This requires more effort on the programmer side.

4.1.3.3 Code Obfuscation

Methods to obfuscate code emerged out of the necessity to hinder others from understanding reverse-

engineered software. Reasons can be found in hiding vulnerabilities or simply preventing the theft of

intellectual property. Obfuscation is common practice in software engineering domains where the physical

access to the software is mandatory and encryption of the code is not an option. Material put into escrow

includes the source code already, so we have a different scenario here. According to [54] the goal of code

obfuscation is to make reverse engineering a costly and time consuming effort. If obfuscated source code is

escrowed, these costs have to be invested by the consumer after the redeployment. To avoid this, the

reviewing process of the software, before putting it into escrow, has to take into account different code

obfuscation techniques mentioned in [54]:

 Layout Obfuscation – E.g. alteration of identifier names or comments

 Data Obfuscation – Changing data structures to make understanding difficult, e.g. replacing a simple

increment variable with a more complex expression.

 Control Obfuscation – E.g. to inline procedures or insert unnecessary dead code

 Preventative Transformations – Exploiting the weaknesses of specific decompilers to stop them from

operating

Practical approaches like in [55] distinguish between disassembly and a decompilation part and focus on the

former one with the goal of entirely thwarting it.

In [56] problems came up when doing experiments and evaluations with non-obfuscated and obfuscated

code. The decompilation of the obfuscated sources could only be done with one decompiler, namely Dava28,

and the constraint of disabling most of the obfuscations because otherwise the decompilation was thwarted.

Thus obfuscators can be seen as quite effective, hindering decompilers to reverse-engineer software and

producing highly complex code if the decompilation is successful.

4.1.3.4 Hide source code

An approach to hide only parts of a source code may be hiding source code in binary form. Two methods will

be discussed in more detail, using the example of Java: hiding source code in libraries and running binaries

from inside the code, which is closely related with running system specific programs.

METHOD 1 – HIDE IN LIBRARIES

The first method, hiding source code in libraries, deals with program logic in a binary file. For instance, a

programmer who wants to hide his Java code from the escrow could add compiled .class files to a commonly

28

 http://www.sable.mcgill.ca/dava/index.html

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 107

Copyright TIMBUS Consortium 2011 - 2013

used library like Apache Commons29. By importing the library into a project, the hidden class and its

functionality could be used easily.

ADDING FILES

In the first case we assume that only files were added, the other files of the library were not altered in any

way. If the developer used a publicly downloadable library that is still accessible during reviewing of the

source code, then the submitted library can easily be tested by comparing the file lists of both libraries. A

simple count of the number of files could also quickly help to find inconsistencies between the archives. Both

approaches entail a manual review that has to verify that differences are due to purposeful obscuration and

are not caused by e.g. using different compilers.

An alternative could be binary comparison. This counteraction involves comparing the library of an escrowed

project to the original library on a binary/byte level. Attention has to be paid to different problems arising

with such a comparison. If the same library that was used in the project can still be accessed, then a binary

comparison should be easy. The situation is different when the library can be accessed in source code form,

like it is the case with Apache Commons, and got compiled before adding it to the project. Two different

problems arise with this: First, a binary comparison might not help figuring out the changes on the library

because there can easily be differences due to different compilers producing different binaries. Second, if

the source code of a library is accessible then the developer can easily smuggle his own algorithms into the

code without showing discrepancies in the list of class files.

ALTERING FILES

This directly leads to a second case, different to the example in which the files were merely added: altering

files in the library. As mentioned before, one precondition for this is free access to the source code of the

library. If the library is only available in a binary form, altering files is less likely because the library has to be

decompiled and the cost to hide functionality increases. One possibility to check for changes, under the

assumption that a more or less simple binary comparison is unsuccessful, would be comparing file size. This

could be either on the level of the library to compare the size of a jar file or could be done for each class file

in the library. Tests showed that the size of binary files stays the same when using the compilers of Java 6

and 7, so only an alteration of the underlying code might change the file size30.

Another problem arises if the library used is not publicly available like open source libraries. In this case

there might not be a ground truth to compare the escrowed library to. From a technical point of view there

are only two solutions in this case: requesting the library from the distributor to compare it, or let him do the

comparison himself. However, these cases belong in the legal domain predominantly for which reason they

will not be discussed in further detail here.

METHOD 2 – EXECUTE BINARIES

The second method includes binaries that are executed directly from the source code. This includes, for

instance, running shell scripts or system inherent programs like copy or make-directory from inside the

29

 http://commons.apache.org/
30

 Of course, replacing instead of adding/deleting source code could be used to not change the file size.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 108

Copyright TIMBUS Consortium 2011 - 2013

code31. These cases have to be checked for bad coding practice, e.g. if only Unix commands are used for a

program also running on Windows machines. For a program put in escrow these code parts have to be

adjusted or it has to be checked if the executed scripts are within the escrowed material and do not contain

any further external references. If other binaries or web services are called from within the code, the escrow

agent will have to make sure that they do not contain any hidden source code as well.

4.1.4 Legal considerations

4.1.4.1 Copyright and author’s rights on software

With the Computer Program Directive32 computer programs are copyright protected as literary works and

this protection has to be implemented in the national law of the European Member States. The scope of the

copyright protection is quite broad and applies to the preparatory design material of the program as well as

to “the expression in any form of the computer program”. Hence, the program is protected as source code

and as object code. However, the underlying principles and ideas of the software are not copyright

protected.

The computer program gains protection as the author’s own intellectual creation, as determined in Article 1

(3) Computer Program Directive. Recital 8 of the Directive explicitly clarifies that no other criteria should be

decisive to determine the protection of the computer program. Therefore it is not necessary that the author

proves the fulfilment of any other qualitative or quantitative criteria to gain protection for his computer

program. The European Parliament’s proposal to adopt a reference to the “author’s own creative intellectual

effort” was not incorporated in the final version of the Directive. So the understanding of originality in the

Directive is significantly lower than in Continental European Law and more or less equals the concept of

British and Irish copyright.

Despite this rather low level of originality, computer programs that are absolutely banal and commonplace

among the software developing industry are excluded from the Directive’s protection as they fail the

requirement of being an “intellectual creation”.33 Although according to the Directive there are no

requirements such as a certain quality or complexity, programs that are not the result of any creative activity

at all and do not require neither skill, nor labour, nor investment must be regarded as commonplace and

therefore being outside of the Directive’s scope of protection.34

Pursuant to Article 2 (1) of the Directive the author of a computer program normally is the natural person or

group of natural persons that has created the program. Besides, national legislation can also permit the

31

 An example for Java in Windows would be “Runtime.getRuntime().exec(cmd /C copy file folder)” with which the file

file gets copied to the folder folder.
32

 Directive 2009/24/EC of the European Parliament and of the Council of 23 April 2009 on the legal protection of

computer programs, OJ L 111/16-22,

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:111:0016:0022:EN:PDF (17.10.2012).
33

 Dreier in Dreier/Schulze, Urheberrechtsgesetz
3

(2008) § 69a UrhG Rz 27.
34

 Blocher/Walter in Walter/Lewinski (ed), European Copyright Law (2010) 5.1.16.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 109

Copyright TIMBUS Consortium 2011 - 2013

copyright ownership of legal persons. This is the case, for example, in British copyright law35, whereas in

some Continental countries like Germany only natural persons can be authors of copyright protected

works36.

In Member States such as France, whose legislations recognise collective works, the person who is

considered its creator shall be deemed to be its author. A definition of “collective works” is not given in the

Directive and thus also left to the national legislator.37

Article 2 (2) states that the exclusive rights regarding a computer program created by a group of natural

persons jointly also shall be owned jointly. However, the understanding of what is regarded a work of joint

authorship varies among the different national legislations. Under British and German law it refers only to

uniform works, which merge the contributions of the single authors inseparably and hence can be exploited

just as a whole. On the contrary, in countries like France and Belgium already the mere combination of

independent works for joint exploitation meet the legal requirements of collective works.38

Paragraph 3 of Article 2 contains an important provision for works made by employees: If an employee

creates a computer program in execution of his duties or following the instructions given by his employer,

the employer – and not the employee himself – by law automatically becomes owner of all economic rights

in this program. This exception from the basic rule, that the author of a creation always is considered holder

of the corresponding copyright (with all its economic benefits), is justified in the face of the regular payment

the employee already receives for his labour.39

The provision can be modified by contract between the parties though. It does not affect moral rights of the

author, such as claiming paternity of the program, and leaves the application of a special moral rights regime

to the national legislation of the Member States. In Germany, for example, the author has a certain core of

moral rights in his creation which cannot be conferred to others – whereas the British copyright is

completely transferable.40 These and other differences between the Member States’ national legislations

regarding the moral rights of the creator also explain the use of the broader term “author’s rights” instead of

“copyright” in the Directive.

Depending on national legislation, the term “employee” can be understood in a broad sense and also include

government officials and functionaries.41 However, the exceptional rule of Article 2 (3) cannot be applied to

programs created by software houses or freelance software developers on commission and on the ground of

a contract between independent parties; it is limited to programs of employees created on the basis of

35

 Blocher/Walter in Walter/Lewinski, European Copyright Law, 5.2.13.
36

 Thum in Wandtke/Bullinger, Urheberrecht
3
 (2009) § 7 Rz 8.

37
 Blocher/Walter in Walter/Lewinski, European Copyright Law 5.2.14.

38
 Blocher/Walter in Walter/Lewinski, European Copyright Law 5.2.20.

39
 BGH, MMR 2002, 101 = GRUR 2002, 149 = NZA-RR 2002, 202 – Wetterführungspläne II; see Hoeren, Skriptum

Internet-Recht 10/2012, 55,

http://www.uni-muenster.de/Jura.itm/hoeren/materialien/Skript/Skript_Internetrecht_Oktober_2012.pdf

(17.10.2012).
40

 Wiebe in Spindler/Schuster (ed), Recht der elektronischen Medien
2
 (2011) § 69 b UrhG Rz 2.

41
 Blocher/Walter in Walter/Lewinski, European Copyright Law 5.2.27.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 110

Copyright TIMBUS Consortium 2011 - 2013

contracts of employment. Besides, the provision only applies to works created by the employee during his

working hours and within his contractual duties. Therefore, it cannot be applied to computer programs

developed before the beginning or after the expiration of the employment agreement.42

But within the area of employment contracts it is the provision of Article 2(3) which allows the employer to

exclusively exploit the economic value of the computer programs developed by his employees and confer

licenses to others.

4.1.4.2 Software licenses

Often “software licences” – a term originating from Anglo-American law – are referred to as “license

contracts” but at least in the continental legal systems of Germany and Austria this type of contract does not

exist. Therefore software licences are to be assigned to one of the different types of contracts known to the

Private Law of these countries, like sale contracts (Kaufverträge), rental/hire contracts (Mietverträge),

contracts for personal service (Dienstverträge), contracts for work and services (Werkverträge), mixed

contracts (typengemischte Verträge) etc., depending on the distinctive features of the agreement in

question. The classification of the agreement cannot be based on the name of the contract chosen by its

parties but on its content. It can become very relevant to interpret the extent of the stipulations and specify

the exact obligations and duties of the parties.

If pre-existing standard software including the right of permanent usage is sold to a purchaser for a singular

payment, this agreement normally would be considered a sale contract.43 But if a software house creates

completely new software designed for individual requirements of a customer, this most likely would be

based upon a contract for work and services.44

However, on a business level none of these two clear situations are very common. Today more and more

software houses construct their products by combining already existing parts stored in their software library

and adapt the result to the individual needs of the customer.45 In this case, the applicable contract law

depends on the effort necessary for the customisation of the software. As a general rule, an agreement can

only be considered a contract for work and services, if its preponderant part actually concerns services (of

developing, creating, adjusting, customising the software) and not just sale and delivery of the product.46

Modifying and customising a standard program, in such a way that it is of no use to anyone else but the

customer himself, would be an example.47 The principal feature of a contract for work and services is the

duty to produce – against payment – certain results defined in the agreement, for example an installed

software program performing a set of tasks specified in the contract between software house and client. So

the simple sale of standard software without any obligation to successfully adapt the computer program to

42

 Wiebe in Spindler/Schuster,Elektronische Medien § 69 b UrhG Rz 3.
43

 Redeker, IT-Recht
5

(2012) Rz 523.
44

 Marly, Praxishandbuch Softwarerecht
5
 (2009) Rz 635.

45
 Conrad/Schneider, Erstellung von Software, in Auer-Reinsdorff/Conrad, § 8 Rz 1.

46
 Marly, Softwarerecht Rz 633.

47
 See Hoeren, IT-Recht 10/2012, 102, http://www.uni-

muenster.de/Jura.itm/hoeren/materialien/Skript/Skript_Internetrecht_Oktober_2012.pdf (21.11.2012).

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 111

Copyright TIMBUS Consortium 2011 - 2013

the particular needs of the buyer does not match the characteristics of this type of contract and belongs to

the scope of application of sale contract law.

Apart from the obvious advantage of a contract for work and services regarding the obligation of the

software house to not only provide the software but to complete successfully the customising tasks

established in the agreement, this type of contract has some additional benefits in comparison with sale

contract law in case of defects, e.g. more extensive rights of the customer and a considerably longer

warranty period.48

But even if the focus of the license agreement is on the providing of software and not on its creation and

customising, it is not necessarily a sale contract. Depending on the peculiarities of the agreement at hand, a

classification as a rental/hire contract often may be more adequate. This kind of contract usually applies

when one party receives a payment in exchange for leaving an object temporary in hands of the other party

so the latter is able to make use of it. The essential characteristic for distinguishing these agreements from

sale contracts is the permission to use the software only for a limited period of time; another indication may

be a regular payment for the use of the program.49

There is also the possibility of developing software under a contract for personal service which does not

include the obligation to actually finish successfully the making of a program or parts of it but only to be

working on it. This results in a very limited liability of the software developer in the event of failure to

complete the project he is assigned to. However, usually this type of contract only applies, if the developing

party has a low level of self-responsibility and independence, like an employee developing software for his

employer.50

Summing up, the non-existence of “license contracts”, as such in the Private Law of countries like Germany

and Austria, makes it necessary to analyse thoroughly the content of software agreements in terms of their

contractual nature to clarify the extent of possibly unclear stipulations.

4.1.4.3 Software maintenance

Besides software license contracts that enable the software user to apply the computer program in its

enterprise, software maintenance contracts and Software Escrow agreements can be established to ensure

on-going operability and protect the investment in the software. So far, no standard type of software

maintenance contract has yet evolved.51 Such agreements may therefore comprise a wide variety of types of

support for the software solution implemented in an enterprise. The regular content of a software

maintenance contract can be arranged into three main categories:

1. keeping the software operable and usable through bug-fixing but also through the sup-

ply/implementation of patches,

48

 Redeker, IT-Recht Rz 297.
49

 Redeker, IT-Recht Rz 529, 596
50

 Redeker, IT-Recht Rz 497 f.
51

 Wolner, Computerrecht, in Hausmaninger/Petsche/Vartian (ed), Wiener Vertragshandbuch II
2
 (2012) 349.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 112

Copyright TIMBUS Consortium 2011 - 2013

2. the supply/implementation of updates,52

3. application support and consultancy on the functions of the software.

Furthermore, the circumscription of these tasks will then – in contemporary software contract frameworks –

regularly be complemented by the appointment of certain service levels regarding the fulfilment of the

maintenance operations. So-called service level agreements (SLAs), especially govern response-/resolve

times and the quality and scope of the maintenance services to be undertaken pursuant to the software

maintenance contract.53

The company that developed the software will regularly be the obvious choice for the abovementioned

tasks. It is however also possible that a third party is contracted to perform the maintenance of the software,

provided that it has access to the source code.54 From a legal point of view, the classification of a software

maintenance contract depends on the definition of the tasks to be fulfilled by the software maintenance

provider and on their concrete formulation in the contract. If the maintenance provider obliges himself to

deliver certain contractually determined results regarding its tasks, the underlying agreement most likely is a

contract to produce a work.55 If such results cannot be identified in the agreement, usually the provisions on

service contracts apply.56 The latter contractual solution will, of course, be the obvious choice for the

maintenance provider as in that case, he will not necessarily have to fix issues like bugs on a regular basis,

but only provide his best efforts to do so. Moreover, the decision whether to rent or buy software in the first

place will impact the necessity of concluding a software maintenance contract. In case of the software being

rented,57 the rental fee could potentially also cover some maintenance services. There is, however, only an

obligation to maintain the software to the degree that it complies with the specifications laid down in the

software license contract. It thus depends on the concrete formulation of the license contract whether it

also covers maintenance services.58 Therefore, it is advisable to at least include a section regarding software

52

 An update may be e.g. the configuration of the software to (re-)establish compliance after legislative changes

affecting the enterprise of the software user. Furthermore, software maintenance contracts may also comprise the

obligation to supply and implement upgrades, i.e. such modifications that – in contrast to updates – add further

functionality to the software, cf. Meents, IT-Recht, in Walz (ed), BeckecktOT Formularbuch Zivil-, Wirtschafts- und

Unternehmensrecht Deutsch-Englisch
2
 (2010) 1016 et seq.; Wolner in Hausmaninger/Petsche/Vartian 350.

53
 Bussche/Schelinski, IT-Vertragsgestaltung, in Leupold/Glossner (ed), MsneragsgestaltungL_CITATION {"cit

2
 (2011) Rz

375. For more details on SLAs, TIMBUS Deliverable 4.4. Digital Preservation & Legal Issues – Overview 129 et seq.
54

 Bussche/Schelinski in Leupold/Glossner, Rz 370.
55

 So-called Werkvertrag, §§ 1165 ff ABGB; §§ 631 ff BGB. The definitions of the contract types used in this text follow

the terminology used in the English translation of the German Civil Code (BGB) accessible via the legal information

system of the Federal Republic of Germany operated by the Federal Ministry of Justice, gesetze-im-

internet.de/englisch_bgb/index.html (27.02.2013).
56

 So-called Dienstvertrag, §§ 1153 ff ABGB; §§ 611 ff BGB.
57

 The abovementioned considerations for rented software also apply to ASP (application service provider) contracts.
58

 Iro in Koziol/Bydlinski/Bollenberger, Kurzkommentar zum ABGB
3
 (2010) mmentarRz 3.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 113

Copyright TIMBUS Consortium 2011 - 2013

maintenance in the software license contract to ensure that updates will be performed in case of legislative

changes affecting the enterprise of the software user.59

Some software maintenance contracts will moreover contain provisions on the regular release cycles

regarding the software licensed to the user. There is a strong motivation for software development

companies to align their efforts in keeping the software implemented in a specific enterprise operable

through software maintenance services and releasing new versions of the same software, e.g. through

simple patches, updates, or elaborate upgrades introducing new functionalities to the software. Software

users might however not always share those interests and might be reluctant to buy/rent the latest upgrade

and implement it in their enterprise, e.g. out of the fear of data loss or additional costs for training of their

employees. Also in this case, the on-going maintenance of the old software version still running on the

enterprises hardware is jeopardized. In the light of the rapid technological development in this area, it will

not be in the interest of the software development company to service several versions of the same

software at all times. The duration of maintenance contracts for older software will thus regularly be

limited60 and the software user will correspondingly be in need of another solution to ensure the continuing

maintenance of his software. To this end he will be in need of having access to the software’s source code. In

the case of proprietary software the most widely disseminated contractual model to ensure orderly access to

the source code is a Software Escrow agreement. Besides that reality in the software maintenance business,

all of the abovementioned types of contracts – depending on the concrete formulation of the maintenance

tasks – are to be classified as continuing obligations. As a consequence, a special legal doctrine will regularly

be applicable in the case of software maintenance contracts. Pursuant to this non-contractually abolishable

legal doctrine, continuing obligations may be terminated for good cause at any time and also irrespective of

whether the underlying contract is a fixed-term contract or a contract for an indefinite period of time.61

Another effect arising from the nature of software maintenance contracts as being continuing obligations is

the insecurity of their on-going existence in case of the insolvency of the maintenance provider since the

liquidator then has the choice whether to terminate or meet the maintenance contract.62 The insecurities

regarding the continuing availability of maintenance services because of the various points made in this

section adds emphasis to the argument made above, namely the need to ensure access to the software’s

source code through the contractual means of an escrow agreement.

4.1.4.4 Motivation for circumspect contract drafting – the Telecom NZ story

The recent case of Telecom New Zealand v Aldous63 serves as a good example for the importance of

circumspect contract drafting when planning to engage in a Software Escrow agreement. Telecom New

59

 Wolf, Taktische Vorschläge zur Gestaltung von Softwareverträgen (1. Teil), EDVuR, 6 (19).
60

 Eg Wolner in Hausmaninger/Petsche/Vartian 342.
61

 Bollenberger in Koziol/Bydlinski/Bollenberger, ABGB §(2010Rz 7.
62

 § 21 atIO.
63

 The following case description follows the recent litigation between Telecom New Zealand v Aldous,

High Court of New Zealand 26.06.2012, CIV-2012-404-3513 [2012] NZHC 1501, http://www.burgess.co.nz/law/wp-

content/uploads/2012/08/Aldous.pdf (27.02.2013).

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 114

Copyright TIMBUS Consortium 2011 - 2013

Zealand, a telecom service provider hereinafter referred to as Telecom NZ, had entered into a software

license agreement with Aldous, a software development company. As the particular software has been

essential to the operation and the decommissioning of Telecom NZ’s (old) CDMA64 network, a tri-party

escrow agreement was concluded between Aldous, Telecom NZ and an escrow agent. Pursuant to the

agreement’s terms Aldous was obliged to deliver the source code and adjacent documentation to the escrow

agent. The deposit procedure foresaw that in case of an update of the software, Aldous would have to

deposit these materials within a period of ten days of each update and the escrow agent would then be

under an obligation to notify Telecom NZ upon receipt of the materials. Furthermore, the escrow agreement

enabled Telecom NZ to demand the release of said materials under certain circumstances, among them i.e.

Aldous’ insolvency.

The latter scenario became reality. Aldous went into receivership in mid-2012. Since the beginning of the

software license contract Aldous had been further developing the software, implementing the corresponding

updates in Telecom NZ’s enterprise and putting them into escrow. Pursuant to an estimation of Telecom NZ,

the cost of such updates amounted to approximately NZD 7.000.000 excluding license and other fees in the

period from 2008 to 2012 alone.65 However, during its financial struggles, Aldous’ had carried on updating

Telecom NZ’s software and implementing these updates, but had ceased to deposit the corresponding

source code and adjacent documentation with the escrow agent. From this moment on, the escrow agent

had logically stopped informing Telecom NZ of the deposit of new updated code versions, but Telecom NZ

did not notice the absence of such messages. After the occurrence of the triggering event of Aldous’

insolvency in 2012, the escrowed source code that was released to Telecom NZ proved to be only an old

version not matching the updated new software version implemented in Telecom NZ’s enterprise.

Due to a flaw in the deposit procedure, namely an imperfection in the contractual design of the information-

/notification procedure, paired with Telecom NZ’s inattentiveness regarding the monitoring of the software

versions implemented in its enterprise, the on-going operability of its CDMA network is now jeopardized. As

the receivers appointed to Aldous will be eager to make maximum profit of the new source code as an asset

to be exploited for the benefit of the Aldous’ creditors, Telecom NZ will probably have to pay a huge sum to

get into possession of that source code. A more detailed design of the notification procedure could have

saved Telecom NZ the extra financial expenses for the new source code version. More detail on contractual

solutions preventing software users of such inequitable situations like e.g. more comprehensive notification

obligations or their reinforcement through penalty clauses is given below in the Section Redeployment 4.4.

4.2 Phase I – Planning

4.2.1 Overview

The Software Escrow planning phase must already be initiated at the stage of the software licensing contract

negotiations as it is vital for the Software Escrow’s on-going existence that its rudimentary provisions are

64

 I.e. Code Division Multiple Access.
65

 Telecom New Zealand v Aldous, Rz 7.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 115

Copyright TIMBUS Consortium 2011 - 2013

already to be found in the software licensing agreement. The planning phase includes all of the preparatory

measures that have to be taken before the Software Escrow can be executed. As certain costs are associated

with the setting-up of a Software Escrow, the first step should be a risk analysis establishing whether the

software contemplated for escrow is crucial for the execution of the business process it is supporting and

even more importantly, whether that business process itself is crucial for the enterprise executing it. Once

the viability of the Software Escrow is established, the right escrow agent for the job has to be found. The

next step is the drafting of a suitable escrow agreement. Such a contract has to be aware of the three phases

of Software Escrows, offer solutions for the potential problems which can occur during the lifecycle of a

Software Escrow and particularly deal with the IPRs (Intellectual Property Rights) protecting the developer’s

software.

In that context, it shall once again be emphasized that – although the contract drafting is carried out in the

planning phase – for the purpose of this text, the contractual solutions for the execution and the

redeployment phase are dealt with in the section corresponding to that phase.

4.2.2 Selection of the escrow agent

It is a cost-effective possibility to deposit the material relevant for the escrow in a sealed envelope at the

user’s place because no fee for the deposit must be paid. But this option bears different risks for the

software developer as well as for the user.66 In the past, the relevant material was deposited in a sealed

envelope in a safe at a bank or at a lawyer or notary. Either the software developer or the user entered into

a tenancy agreement with the bank. This form of an escrow agreement had disadvantages. By using a sealed

envelope, it was not possible to verify the content of the material and to determine whether the material

meets the necessary requirements. The deposited material could be useless at worst. Furthermore, if the

agreement was established between the user and the bank, the software developer had no influence

concerning the access of the user to the safe. Further specifications were necessary to satisfy the interests of

the software developer.67 Lawyers and notaries were deemed to be qualified because they were able to deal

with the relevant legal questions. Nevertheless, banks, lawyers and notaries lacked the professional skills to

test and verify the deposited material. Consequently, to be sure that the deposited material was not useless,

another company had to be hired ensuring that the technical requirements were met. Furthermore, by

deposing the material at a lawyer or notary, the impartiality had to be guaranteed.68 These considerations

have led to the deposit of the material at an escrow agent69. A specialized escrow agent has the know-how

to ensure the safety and quality of the deposited material. Model contracts to ensure confidentiality

between the contracting parties and guidelines for the deposit of updates and the verification process of the

66

 Please see TIMBUS Deliverable 4.4: Digital Preservation & Legal Issues – Overview, 140 f for detailed information.
67

 TIMBUS Deliverable 4.4: Digital Preservation & Legal Issues – Overview, 141; Lewis/Moor, Ensuring IP Protection

through Escrow, ESL 2003, 8 (8).
68

 TIMBUS Deliverable 4.4: Digital Preservation & Legal Issues – Overview, 141 f; Kochinke/Fraune, Hinterlegung von

Quellcodes im US-amerikanischen Recht, CR 1992, 7 (11); Lewis/Moor, ESL 2003, 8 (8).
69

 Escrow agent in this context means a company specialized in this field.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 116

Copyright TIMBUS Consortium 2011 - 2013

material are used.70 Furthermore, the escrow agreement contains all the necessary obligations of the parties

and further specifications. Consequently, the different interests of all parties can be served (please see

below for detailed information concerning the escrow agreement and the verification process).71

4.2.2.1 Requirements regarding the escrow agent’s IT infrastructure

Another aspect of choosing the right escrow agent is largely dependent on the type of IT equipment he has

at his disposal.72 Ideally, the escrow agent’s infrastructure has to correspond to the technological platform

that is necessary to view, compile and run the software to be put into escrow. It would certainly be

beneficial for the software user to choose an escrow agent with an in-house verification lab to ensure the

independence and impartiality of the verification process. Moreover, such a constellation could also prove

useful for the software development company, as the source code and the know-how embodied in it are

only exposed to one party, the escrow agent. It can be foreseen in the escrow agreement that only certain

qualified personnel of the escrow agent is to be entrusted with the tasks regarding a particular deposit.

Furthermore, the escrow agent can be obliged to contractually swear his employees to secrecy about the

information gained in course of their work.73 However, if the parties cannot agree upon an in-house

execution of the verification process, the escrow agreement should consider the question of to what extent

the escrow agent will be in need of using the software developer’s or a third-party’s infrastructure to

perform the tests on the deposit materials.

4.2.2.2 Data security requirements – liability of the escrow agent for improper storage

The escrow agent can be held liable for damages suffered by the licenser or licensee in accordance with the

relevant provisions of law, if he acted intentionally or negligently. 74 The escrow agreement should contain

terms of liability. The liability of the escrow agent can be limited to a maximum amount. Subject to the

mandatory legal liability, the escrow agreement can also contain a clause establishing liability of the escrow

agent only for damage that is typical for escrow work, foreseeable for the escrow agent and if a cardinal

obligation has been negligently violated.75 The agreement must be in accordance with standards established

with regard to unfair contract terms. Liability of the escrow agent should be excluded for circumstances

resulting from refusal of the contracting parties to fulfil an obligation or from defective fulfilment. An

insurance should be taken out.76

70

Prenafeta Rodriguez, Sobre el Contrato de Escrow: Naturaleza jurídica y algunos problemas,

www.noticias.juridicas.com/articulos/20-Derecho%20Informatico/200203-2755122021023780.html (06.12.2012).
71

 TIMBUS Deliverable 4.4: Digital Preservation & Legal Issues – Overview, 142 ff.
72

 CEN, ESCROWGUIDE - Source Code Escrow - Guidelines for Acquirers, Developers, Escrow Agents and Quality

Assessors, CWA 13620-4:1999 E, Part 4: A guide to providing a reliable escrow service 17.1.
73

 Wolner in Hausmaninger/Petsche/Vartian 358 f.
74

 Wolner in Hausmaninger/Petsche/Vartian 365; Imhof in Weitnauer (ed), Beck’sches Formularhandbuch IT-Recht
2

(2009) 120.
75

 NCC Group Escrow Germany, www.nccgroup.com/media/107015/sl_gmbh__ger__june_2012.pdf (29.11.2012) 11.1.
76

 TIMBUS Deliverable 4.4: Digital Preservation & Legal Issues – Overview, 149 (150).

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 117

Copyright TIMBUS Consortium 2011 - 2013

The deposited material must be stored in a safe and secure environment.77 The escrow agent is obliged to

protect the escrowed material from damage and theft. Furthermore, he must constantly control the

temperature and humidity of the storeroom.78 It must be ensured that the atmospheric environment is

adequate to maintain the quality of the deposited material. 79 The material has to be treated as

confidential.80 As it contains the know-how of the software product, the software developer’s interests

concerning his intellectual property rights must be protected. Furthermore, confidentiality is crucial for the

user as well, e.g. if the software was individually created for the user’s needs and has a key function in his

business. The escrow agent has to oblige persons working for his company and persons assigned to carry out

verification procedures to maintain confidentiality.81 Measures need to be taken to prevent access by

unauthorized persons.82

The group of people who has access to the material should be limited to a certain number. The licenser

should be informed about the group of people who has access to the deposited material. The escrow agent

is obliged to identify a person before granting access. He should note the time, duration and purpose of the

access and if information was removed or added.83

The escrow agent shall not be liable for any delay or failure in performing a contractual obligation if the

reason for the delay or failure was beyond the escrow agent’s reasonable control, e.g. act of God, war,

prohibitions by any governments, or other legal authorities affecting the agreement.84

4.2.2.3 Information-/notification obligations

The escrow agent has to notify the contracting parties about the damage or destruction of the material.

Additionally, the software developer and the user have to be informed if such an event is likely to occur.

Furthermore, the escrow agent has to inform the parties about activities of third parties which are likely to

affect the deposited material, e.g. problems with external companies that are responsible for the

maintenance or security of the storage environment.85

4.2.3 Alignment of the contracts pertaining to the software contracting framework

For the purpose of the establishment of a holistic Software Escrow solution, it has to be ensured that already

the software licensing contract and also a possible maintenance contract are aware of the escrow

agreement.86 The latter agreements will regularly have to be qualified as continuous obligations, which

77

 NCC Group Escrow Germany, www.nccgroup.com/media/107015/sl_gmbh__ger__june_2012.pdf (22.11.2012) 4.1.1.
78

 Sheffield/Leeven, Software-Quellcodehinterlegung, CR 1995, 306 (307).
79

 TIMBUS Deliverable 4.4: Digital Preservation & Legal Issues – Overview, 149 (151).
80

 Bömer, „Hinterlegung“ von Software, NJW 1998, 3321 (3323).
81

 TIMBUS Deliverable 4.4: Digital Preservation & Legal Issues – Overview, 149 (150 f).
82

 NCC Group Escrow Germany, www.nccgroup.com/media/107015/sl_gmbh__ger__june_2012.pdf (22.11.2012) 4.1.1.
83

 Wolner in Hausmaninger/Petsche/Vartian 358 f.
84

 NCC Group Escrow Germany, www.nccgroup.com/media/107015/sl_gmbh__ger__june_2012.pdf (29.11.2012) 14.8.
85

 Soler Matutes/Piattini Velthuis, Manual de Gestión y Contratación Informática (2006) 894.
86

 Kast/Schneider/Siegel, Software Escrow, K&R 2006, 446 (449); Redeker, IT-Recht Rz 592.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 118

Copyright TIMBUS Consortium 2011 - 2013

might be terminated for reasons stemming from the escrow agent’s sphere that are not contractually

manageable, e.g. the agent’s insolvency. It is thus vital for safeguarding the goal of ensuring the on-going

maintainability of the software, to have a lasting contractual mean – in that case, provisions on Software

Escrow in the software licensing contract – at disposal, regardless of what the current legal state of the

Software Escrow agreement might be. So, the software licensing agreement ideally already has to contain a

rudimentary – but nonetheless legally enforceable – preliminary Software Escrow agreement. The latter

contractual measure especially has to entail a solution for the case of shortcomings of the first escrow agent

or the termination of the escrow agreement by the latter agent for any reason. The software user should be

given a position that allows him to legally enforce the conclusion of an escrow agreement with another

agent. A concrete timeframe has to be set for the execution of all of the escrow agreements following the

conclusion of the software licensing contract.87 Another important point that needs to be addressed in the

software licensing contract is the concrete scope of the IPRs – regularly copyright – to the source code and

adjacent materials that the software user will be given in case one of the events triggering the release of the

deposited materials is realized.

4.2.4 Selection of the material to be deposited

Having certain scenarios in mind, one would assume that the concrete selection of materials contemplated

for an escrow deposit could vary depending on the amount of knowledge on the software existent in the

software user’s enterprise. In case of major involvement of the software user in the production process of a

software solution handcrafted for the specific needs of this user for instance, knowledge on the concrete

functionality and design of the software would be readily available in the form of the know-how of the user’s

employees involved in that process. This situation may however alter over time, as these employees could

leave the user’s enterprise and thus their know-how on the software development process would be lost.

Therefore, for the purposes of the holistic Software Escrow solution contemplated in this chapter, the list of

software development project artefacts is an absolute one. It consists of all the materials necessary to

enable any software developer (without prior knowledge of the concrete software development project)

with average coding skills to carry out maintenance services on the user’s software in a reasonable

timeframe.

Of course, the list contemplated for the purposes of this chapter is a very high level one in the sense that it

may apply to any software, irrespective of the concrete programming language and development

environment used. This list should be included in the software license contract that should in turn already

contain the rough outline of the Software Escrow agreement to be concluded. In course of the Software

Escrow agreement drafting phase, the items listed in the high level enumeration in the abovementioned

software license contract should be broken down into more specific categories and specify the concrete

software development artefacts that need to be deposited in order to ensure the maintainability of the

deposited software upon redeployment.

87

 Karger, Software-Hinterlegungsverträge, in Kilian/Heussen (ed), Computerrechts-Handbuch
29

 (2011) Rz 86.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 119

Copyright TIMBUS Consortium 2011 - 2013

The form in which the deposit of the information represented in the single deposit object enumerated in the

Software Escrow agreement’s listing is carried out will largely depend on the concrete software. If, for

example, the software uses only standard compilers then the sole information on the type and version

number might suffice, whereas if more specific compilers are used, the deposit of the compiler software

might be warranted.

From a technical point of view there are different groups and artefacts that belong in an escrow deposit. All

of the deposited artefacts have to be checked and evaluated, which is a time-consuming and therefore costly

task. Thus, besides choosing the most essential parts of software, it is important to decide on a selection of

artefacts that have to be deposited. A comprehensive summary of reasonable artefacts can be found in [49].

A shorter list, based upon the objects mentioned there and focusing on maintainability, leaving aside

functionality, follows:

 Interfaces – Export interfaces can be checked for their implementation. This, however, overlaps

more with a functionality test than the maintainability we are focusing on in this work.

 Intellectual property – Especially licenses for e.g. libraries used in the software or compilers are

interesting for maintainability.

 Documentation - [49] discernes system documentation and end user documentation. The latter one

only contains different functionality descriptions which are not in our focus. However, regarding

artefacts concerned with system documentation, system architecture, and a general documentation

of the software at hand, subsuming other artefacts like a maintenance guide or component

descriptions, will be of interest.

 Test environment – All artefacts important for testing the software have to be included, like test

infrastructure, test cases, test data, test script, or test reports.

 Design environment – Especially the design models are important for maintainability.

 Build environment – Compilers, runtime environments, configurations for the build like compile

scripts or third party libraries are of interest.

 Applications – The most fundamental part of a software, the source code, as well as data sources,

like a data base, or other binaries are important for maintainability.

4.2.5 Rights to the source code and adjacent materials

To fully perform his tasks during the execution phase, the escrow agent needs the right to demand regularly

the newest version of the source code from the software producer and verify the deposited materials to

assure the quality of the program.88 Especially for long-term agreements the parties may also find it useful to

entitle the escrow agent foresightfully to migrate the deposited materials from a then out-of-date storage

device to a more current medium.

88

 Cf. Schneider, Hinterlegung von Software, Escrow, in Schneider/von Westphalen (ed), Software-Erstellungsverträge

(2006) Chap V Rz 81.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 120

Copyright TIMBUS Consortium 2011 - 2013

The software developer usually has no right to demand back the deposited original version of the source

code from the escrow agent during the execution phase. However, this does not exclude the possibility to

establish contractually an additional right to a copy of the deposited materials in case the software producer

suffers a data loss and has no sufficient backup himself.

The consequences of the release of the escrowed materials regarding the rights to the source code have to

be stated in the escrow agreement. Normally software licenses do not provide more than a right of use and

software support to the client; this contractually established principle is not affected by the release of the

escrow materials. Thus, the original right holder usually remains owner of all commercial rights of

exploitation to the code and is protected in this position by certain obligations of the software client (see

below). The obligation of the escrow agent to maintain confidentiality regarding the source code continues

after the release of the materials.89

It is of utmost importance to clarify the client’s rights regarding the software and its source code from the

moment of the escrow release on. To protect the investment of the customer in the program and therefore

ensure his possibility to continue its use without difficulties, he needs more than just the simple right of use.

In German copyright law § 69d (1) UrhG90 provides the software user with some basic rights regarding using,

bug-fixing and making backup copies of the software; however, these limited regulations are normally

insufficient to ensure the continuous usability of the software without any help of the producer and original

right holder.91

The scope of the rights transferred together with the source code can depend on the actual trigger event for

the release of the source code. In the case of insolvency of the software provider an extensive transfer of

rights to the customer seems more adequate than in the trigger event of failed bug-fixing by the software

provider.92 In the latter situation the transfer of rights could be limited to the right to use the released

source code exclusively to fix the program. But especially for triggering events such as the insolvency of the

software provider the escrow agreement should contain unambiguous regulations that entitle the client to

fix bugs, adapt the program to altered demands, develop it further, and perform the necessary maintenance

tasks. In addition, the client should receive the right to copy new versions of the program for his own use.93

It is not necessary to concede more rights to the customer than the abovementioned, though. The purpose

of an escrow agreement is ensuring the continuous usability of the software in case the producer is unwilling

or unable to provide the required service. Therefore the software rights of the customer after the release of

the source code do not need to include rights of any further distribution of the program or any commercial

use that exceeds the limitations of the original software contract.94 Besides, the rights of the user should be

89

 Cf. draft of an escrow agreement in Jaburek, Handbuch der EDV-Verträge
3
 (2003) Vol 2, 296 f.

90
 Gesetz über Urheberrecht und verwandte Schutzrechte, 09.09.1965, BGBl. I, 1273.

91
 Cf. Auer-Reinsdorff/Kast in Auer-Reinsdorff/Conrad § 10 Rz 83.

92
 Cf. Auer-Reinsdorff/Kast in Auer-Reinsdorff/Conrad § 10 Rz 76.

93
 Marly, Praxishandbuch Softwarerecht

5
 (2009) Rz 1782.

94
 Marly, Softwarerecht Rz 1782.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 121

Copyright TIMBUS Consortium 2011 - 2013

adapted to the needs of the individual case – depending on the software license at hand – especially

regarding temporal and territorial limitations.95

If not provided otherwise by the contract, the source code itself and related materials usually have to remain

strictly confidential in respect of third parties. The customer has to protect this confidentiality, e.g. by

revealing these details only to employees who actually need them to fulfil their tasks and are also bound to

secrecy as far as legally possible after the ending of their contract of employment. If it becomes necessary to

disclose the source code to an external service provider that performs software maintenance tasks, the

escrow agreement should oblige the customer to commit such providers to absolute non-disclosure.96

In case the customer does not comply with his obligations regarding confidentiality or other limitations of his

rights to the software and its source code, his misbehaviour may result in compensation claims of the

original right holder. To fully perform his tasks during the execution phase, the escrow agent needs the right

to demand regularly the newest version of the source code from the software producer and verify the

deposited materials to assure the capability of the program.97 Especially for long-term agreements the

parties may also find it useful to entitle the escrow agent for the future to migrate the deposited materials

from a then out-of-date storage device to a more current medium.

4.3 Phase II – Execution

4.3.1 Overview

The execution phase will regularly stretch over a long time span. The execution of the escrow agreement

entails the initial deposit process regarding the software development artefacts, the safe storage of said

materials and the on-going repetition of the latter steps in case new software versions are implemented in

the enterprise of the user. Each deposit process in turn consists of the transfer of the software development

artefacts to the escrow agent, the verification of these artefacts and also possible corrections or even

enhancements of the artefacts in case they do not pass the quality requirements set by the parties in the

escrow agreement. An optimum execution phase serves two main purposes. It ensures that there is always

the latest version of the source code plus adjacent materials of the software implemented in the enterprise

of the user in storage at the escrow agent. Above that, it safeguards the quality of these deposited software

development artefacts to such a degree that any software developer with average coding skills will be able

to carry out maintenance services on the user’s software in a reasonable timeframe.

4.3.2 Deposit procedure

The software development artefacts that have been selected for deposition at the facilities of the escrow

agent (hereinafter referred to as the deposit materials) will have to be submitted to the escrow agent by the

software development company. Those materials will then have to be verified by the escrow agent. In case

95

 Cf. Auer-Reinsdorff/Kast in Auer-Reinsdorff/Conrad § 10 Rz 87.
96

 Cf. draft in Jaburek, EDV-Verträge Vol 2, 296.
97

 Cf. Schneider in Schneider/von Westphalen, Chap V Rz 81.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 122

Copyright TIMBUS Consortium 2011 - 2013

the deposit meets the thresholds set for the deposit materials, i.e. the materials pass verification, they will

be submitted to safe storage. If, however, the verification indicates that the materials submitted are

deficient in the sense that on-going maintenance of the software implemented in the enterprise of the

software user cannot be ensured with these materials, then the software development company will have to

resolve the problems on the basis of the verification report. This procedure will have to be repeated for any

deposit until the criteria for a successful deposit are met. Only then may the submitted deposit materials be

sent to safe storage. In the following sections, the verification procedures existent in the Software Escrow

market and one crucial point, namely the definition of the thresholds for a successful deposit, will be

outlined.

Furthermore, in course of the lifecycle of an escrow agreement, the whole deposit process will regularly

have to be repeated several times. It has to be carried out for the initial as well as for any subsequent

deposit. The latter deposits might be triggered by bug fixes or new versions of the application implemented

by the development company in the software user’s enterprise. To ensure that such bug-fixes, updates or

upgrades correlate with the deposit materials, and thus, the latest software version implemented in the

software user’s enterprise may be created on the basis of the deposit materials, a carefully designed

network of information and notification obligations must be put in place. The procedures necessary for that

will be dealt with in Section 4.3.2.4.

4.3.2.1 Submission deadlines for materials

Besides a well-designed network of information-/notification obligations and the definition of the thresholds

for a successful deposit, from a legal point of view there is another necessary contractual precaution to be

taken in order to make an escrow agreement work in practice. As it is of the utmost importance to ensure

that the software development artefacts are in fact submitted (and resubmitted in case the verification

report suggests to do so) to the escrow agent for verification, the Software Escrow agreement must foresee

a deadline for the initial and any subsequent updated software deposit. In that regard, some model contract

clauses suggest durations of seven days98 or two weeks99 following the completion of the escrow agreement

for the initial submission of the materials to be deposited. According to the latter model contracts, the

obligation to submit updated materials for deposit is either created upon the implementation of the new

software version in the software user’s enterprise and/or at the latest once a year upon a certain date.100

Depending on the negotiation between the software user and developer, it might moreover be advisable to

introduce penalties for the developer’s failing to meet these deadlines. As an example, the user might

deduct a portion of the software’s licence fee as stipulated damages in case the software development

company does not comply with its obligation to deposit its (updated) software development artefacts.

98

 Jaburek, EDV-Verträge Vol 2, 290.
99

 Wolner in Hausmaninger/Petsche/Vartian 358.
100

 Cf. Jaburek, EDV-Verträge Vol 2, 291; Wolner in Hausmaninger/Petsche/Vartian 358.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 123

Copyright TIMBUS Consortium 2011 - 2013

4.3.2.2 Existing verification procedures

There is – up until now and to the authors’ best knowledge – only one reference document for Software

Escrow verification processes, the CEN’s101 ESCROWGUIDE. It lists three types of different verification levels

(standard, full and bespoke) describing the thoroughness of the verification methods applied to the deposit

materials.102 Besides the latter definitions, Software Escrows, depending on the degree of verification

procedures in place, are being referred to as active and passive escrows.103 The main difference between

these two terms is that in case of the passive escrow, the deposit materials are not subjected to any

technical verification. The active escrow, on the contrary, entails a technical verification and moreover

provides an administrative process making sure that the deposit materials are frequently updated.

For the purposes of this section, however, the terminology and definitions provided by the CEN’s

ESCROWGUIDE shall be used. The standard verification ensures that the deposit materials submitted to the

escrow agent are accessible, i.e. neither compressed nor encrypted, but readable and virus-free.104 Although

it also entails a rough check of a random source code sample, the main focus of the standard verification lies

on ensuring the accessibility of the materials. Pursuant to the definition of the full verification, such a

procedure will guarantee that the fully functional software implemented in the software user’s enterprise

can be built out of the deposited source code files.105 The bespoken verification can be seen as a tailor-made

solution, outside the scope of the standard- and full verification procedures, to satisfy the specific wishes

and needs of the parties to the escrow agreement. For example, the software user might want to have the

user documentation supplied to him checked for usability as well or he might want the concrete software

evaluated against software quality standards like SQuaRE106.

4.3.2.3 Thresholds for a successful deposit

The definition of the threshold for a successful deposit is one of the rather difficult points to be tackled in

course of drafting107 a Software Escrow agreement because up until now there are no universally accepted,

accurate standards for the measuring of the quality of software and its source code. It is nevertheless of

utmost importance for the software user to obtain a guarantee that the materials deposited at the facilities

of the escrow agent are of a certain quality because otherwise the whole purpose of setting-up a Software

Escrow would be alienated. Since no absolute figures regarding software quality may be included in the

contract, the most viable contractual solution – especially from the software user’s point of view – is to align

101

 I.e. Comité Européen de Normalisation.
102

 CEN, ESCROWGUIDE - Source Code Escrow - Guidelines for Acquirers, Developers, Escrow Agents and Quality

Assessors, CWA 13620-4:1999 E, Part 4: A guide to providing a reliable escrow service 17.1 et seq.
103

 E.g. Stekhoven, Active Software Escrow’s Usefulness for Companies Embracing COBIT 5, COBIT Focus 2012, 4.
104

 CEN, ESCROWGUIDE - Source Code Escrow - Guidelines for Acquirers, Developers, Escrow Agents and Quality

Assessors, CWA 13620-4:1999 E, Part 4: A guide to providing a reliable escrow service 17.2.
105

 CEN, ESCROWGUIDE - Source Code Escrow - Guidelines for Acquirers, Developers, Escrow Agents and Quality

Assessors, CWA 13620-4:1999 E, Part 4: A guide to providing a reliable escrow service 17.3.
106

 ISO/IEC: ISO/IEC 25000:2005 – Software product Quality Requirements and Evaluation (SQuaRE).
107

 The drafting of the contract takes place in the planning phase, see Section 4.2.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 124

Copyright TIMBUS Consortium 2011 - 2013

the threshold for a successful deposit with the primary purpose of the escrow agreement, i.e. the

safeguarding of the maintainability of the software solution implemented in the software user’s enterprise.

A contractual clause could be designed as follows:

“The materials submitted to ESCROW AGENT by SOFTWARE DEVELOPMENT COMPANY are to be

regarded as being viable for submission into the permanent storage facilities of ESCROW AGENT, if the

verification report created by ESCROW AGENT concludes that: Any software developer without having any

prior knowledge of the SOFTWARE created by SOFTWARE DEVELOPMENT COMPANY and in possession of

average software developing skills may perform OPERATIONS X+Y on the basis of the abovementioned

materials given a reasonable timeframe.”

The extent of the operations that a software developer will have to undertake on the software in the future

will depend on the person of the software user. If that software user is also the end user then those

operations will regularly only entail bug-fixing and keeping the software operable. On the other hand, if the

Software Escrow agreement is concluded between an agent, a single software developer or a software

company focussing solely on development, and a software distribution company (the “software user”, in this

case), the latter company might also be in need of being able to e.g. add a further functionality to the

existing software or create previously unforeseen interfaces to some other software. Moreover, to minimize

the risk of litigation arising out of the generality of the clause, it might be advisable to provide more detail on

the two elements of the programmer in possession of average software developing skills and the reasonable

timeframe for the execution of maintenance tasks in the concrete Software Escrow agreement.

Of course, this contractual solution is tailored to the software user’s expectations regarding the source code.

In case a trigger event occurs, source code and adjacent materials with the inherent quality of enabling any

other software developer to perform the essential operations will help loosen the user’s dependency on the

software development company. Deposit materials of sufficient quality will put the user in a position that

allows him to contract any other software maintenance company on the market with the on-going

maintenance of its software. Furthermore, the generic solution for quality criteria contemplated above

carries the advantage for the company of the software user that its managers engaged in concluding the

contract with the software development company will be able to participate more actively in the contract

drafting negotiations, regardless of their degree of knowledge in the specific domain. The usage of such a

generic clause is moreover utile for its ability of being applied to every software solution regardless of its

concrete functionality and environment (e.g. operation system and hardware).

4.3.2.4 Information-/notification obligations

A carefully designed network of information and notification obligations serves the goal of ensuring that the

materials deposited are always of a quality and in a state – regarding their version number – which enables

the software user to create the latest software version implemented in the software user’s enterprise upon

their release. Such an information structure may only entail the mandatory notification of the software user

upon the receipt of the (updated) deposit materials on part of the escrow agent. However – as

demonstrated above in course of the case of Telecom New Zealand v Aldous108 –such a basic level of

108

 See section 4.1.4.4

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 125

Copyright TIMBUS Consortium 2011 - 2013

communication is not enough to ensure an optimum execution phase. Another useful step would be to

introduce an obligation for the software development company to notify both the user and the escrow agent

in case the software implemented in the user’s enterprise has effectively been updated, as such a step might

be carried out without the user’s knowledge, which was obviously the case in Telecom New Zealand v

Aldous.

Such an information process could be further aided and simplified by contractually foreseeing a procedure

that obliges the contracting parties to regularly build check-sums and carry out automated correlation-

checks regarding the software (i.e. binaries) implemented in the enterprise of the software user and the

corresponding materials (i.e. corresponding binaries) deposited at the escrow agent’s. As soon as a

mismatch of the control parameters is established, all contracting parties will be notified automatically. The

latter mismatch will moreover trigger the start of a specified timeframe for the software developer to

deposit the software development artefacts corresponding to the updated software at the escrow agent’s.

In light of the points made above, it may be concluded that the more comprehensive such information-

/notification obligations and the closer the parties in the Software Escrow collaborate in that regard, the

better the chances for the receipt of useful deposit materials upon the occurrence of an event triggering

their release. Proximity in a geographical sense, i.e. between the offices of the contracting parties, might

further aid the goal of efficient cooperation and communication. The latter point should thus influence the

choice of a conveniently located escrow agent, presupposing, of course, that the other criteria set out for the

selection of an escrow agent in Section 4.2.2 above are all met.

4.3.3 Verification - Technical Framework

In order to evaluate software we developed a technical framework that contains an extendable evaluation

part with which various measurements can be conducted. These measurements allow assessing the quality

of software artefacts with focus on Software Escrow specific concerns. The objective is to evaluate software

artefacts that are delivered to the escrow agent holistically in either an automated, semi-automated or

manual way in order to support a review and speed up the process of quality evaluation at the escrow

agent’s side. The goal is to automate as many measurements as possible and reasonable. However some of

them will still need partial or complete input from a human reviewer. To achieve this holistic approach of

evaluating all artefacts we decided to implement a framework consisting of single plugins that calculate well-

defined measurements, which gives us the opportunity to merge specific results if needed (e.g. show the

relation between complexity and lines of code). This framework builds on the design of Continuous

Integration (CI) tools. It can be seen as an enhancement to a CI-tool, focusing merely on the quality aspects

and less on build automation. Thus our focus is on an architecture extendable by plugins, designed for the

Software Escrow purpose. If a specific measurement is needed for a software under test, the framework

offers interfaces for creating new plugins. The outcome of the evaluation process is the identification of

classes that are most interesting for a manual review. We do not argue that the framework will substitute a

manual review and automate the process of quality evaluation. It can merely be a first, rough assessment of

the artefacts delivered to the escrow agent, with the goal of sorting and highlighting the classes that possibly

seem to be most problematic.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 126

Copyright TIMBUS Consortium 2011 - 2013

An overview of the theoretical framework, its inputs and outputs can be found in the following Section

4.3.3.1. The artefacts used as input in the framework can be found above in Section 4.2.4 as they are part of

the Planning Phase. Section 4.3.3.2 describes the plugins suggested for a complete framework. The reports

produced by the framework will be described in Section 4.3.3.3.

An implementation of a prototype as well as the plugins developed for it can be found later on in Section 4.6.

Experiments done with different plugins to evaluate their applicability can be found in Sections 4.6.2.1 and

4.6.2.2.

4.3.3.1 Structure

The Software Escrow Framework illustrated in Figure 34 has a modular structure, consisting of input,

processor subroutines, and different output formats. A container with all software relevant artefacts as well

as supporting information (metadata) and requirements that need to be considered is used as input to the

framework. The data is analysed and divided into the artefacts needed for evaluation. Different plugins are

triggered, which send their results to a reporting tool where they are formatted into human readable

ranking lists. These lists support the decision of a human reviewer on which classes have to be looked at

more rigorously.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 127

Copyright TIMBUS Consortium 2011 - 2013

The input is a container consisting of different software artefacts, which can be source code,

documentation, test cases, environments, licenses, or virtual machines (cf. Section 4.2.4). The Metadata

item has to be delivered with the input artefacts because it contains information on the container and its

content. For instance, it is important to know which compiler version was used if it is not provided already in

the container. Requirements on the other hand contain information on what has to be tested, which can be

derived from the escrow contract and the agreements made in there. The main part of the Software Escrow

Framework, as depicted in Figure 34, is the Artefact Analyser. There, the container first gets parsed and

segmented in the container handler, which is also responsible for the inspection of the completeness of

artefacts (all artefacts agreed upon in the contract need to be put into escrow). The next step, the Artefact

Processor, processes single artefacts that are sent to one of the two existing test engines: a numeric

evaluation, which handles artefacts that can be used to calculate statistic measurements like Lines of Code

or Cyclomatic Complexity, and a rule based evaluation, which checks for occurrences of rule violations and

returns the location of the violations. Each measurement as well as the checks are designed as plugins. Their

use is specified in the requirements. The plugins of both evaluation models can be run automated, semi-

automated, or manually, depending on their requirements and how they evaluate artefacts. Automated

evaluations are calculations only requiring artefacts, whereas semi-automated evaluations need manual

evaluations from a reviewer for generating the final output. Completely manual evaluations are done solely

Figure 34: Overview of Technical Software Escrow Framework

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 128

Copyright TIMBUS Consortium 2011 - 2013

by the reviewer, the framework only suggests the check and prompts for the results. The results of the

evaluations are reported back to the Artefact Processor which can call the engines again if necessary (e.g.

the result of a measurement is needed for calculating a second measurement). If all necessary evaluations

are done, the Artefact Processor forwards all automated and manual results to the Reporting Tool (cf.

Section 4.3.3.3). There, the resulting data gets processed and according to the requirements a report is

generated.

4.3.3.2 Plugins

The plugins are the centrepiece of the technical software framework. The groups of different plugin families

roughly describe the domain they belong to:

 Metric measurements

 Test environment

 Source code comments

 Specification verification

 External references

 Build environment

 System documentation

 Data sources

 Code obfuscation

The list of presented modules cannot be exhaustive but gives an overview of a solid base from which

common plugins can be further developed. All groups are of the type numeric evaluation, except for the one

described in Section 4.3.3.2.5 – “External references”, which is a rule-based evaluation.

4.3.3.2.1 Metric measurements

The first group of plugins contains statistical measurements of the source code which build the basis for

subsequent measurements. These measurements are based upon physical source code attributes, like the

length or how the source is composed. They are used to give a first rough overview of the code’s

composition by giving it a value or highlighting code parts that need attention. This group includes for

example:

 Code lines plugin (see Section 4.5.1) – A line number calculation. It takes in source code and delivers

the number of its source code lines. Suitable for: methods, classes, files.

 Complexity plugin (see Section 4.5.1) – Calculates the complexity of source code. Takes source code

as input and delivers a number representing the complexity. Suitable for: methods, classes, files,

packages, the entire project.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 129

Copyright TIMBUS Consortium 2011 - 2013

According to [57] there are several important quality indicators regarding important aspects of

maintainability: analysability, modifiability, verifiability and compatibility. A few examples are:

 Duplicated Code plugin – Highlight code areas where a block of at least 40 consecutive source code

lines occur several times in the code. Suitable for: methods, classes, files, packages, project.

 God object plugin – Find objects like files, classes or methods whose scope is too huge. Suitable for:

classes, files, methods.

 Class incest plugin – The superclass must not have direct knowledge of its direct or indirect

subclasses or sub-interfaces. Suitable for: classes.

 Prenatal communication plugin – A virtual method of class K gets called directly from the

constructor, regardless if it is overridden in subclasses or implemented in K. Suitable for: classes.

4.3.3.2.2 Test environment

The plugins of this group are usually standard test in CI tools. Our Software Escrow Framework also evaluates

the testing environment which will be needed for maintainability when the escrowed material gets

redeployed. Plugins of this group are for instance:

 Code Coverage plugin (see Section 4.5.1) – Calculates the degree of source code that was called by a

test case. For this it needs source code/binaries and test cases as input and produces a numerical

percentage as output, where higher values mean more code tested. Suitable for: in particular for the

entire project, also for classes, files, and packages.

 Unit testing plugin (see for instance [58]): Checks if all unit tests terminate with a positive test result.

Inputs are the test cases, the source code or its binary, and probably test scripts to trigger the tests.

Output is textual, stating the correct execution of all tests or the ones that did not pass. Suitable for:

classes, files, packages and the entire project.

4.3.3.2.3 Source code comments

Comments within the source code are crucial for the understanding of the source code. Thus they need to be

comprehensible for a developer and in case of Software Escrow most likely for a developer who is new to the

software. To guarantee understandability, analysis of this (partly) natural language text has to be done

taking into account different aspects, including quality of the text (how readable is the text?) as well as

quantity (how much comments are there?). The plugins related to this group are for example:

 Readability plugin (see Section 4.5.3.3) – Indicates how easy text can be read. Input is of textual

form, output a numeric value. Suitable for: comments or other textual writing.

 Readability:Comment-words plugin – Sets the readability value in relation to the number of com-

ment words. Input are numerical values, output is numerical as well. Suitable for: methods, classes,

files.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 130

Copyright TIMBUS Consortium 2011 - 2013

 Language detection plugin (see Section 4.5.4) – Detects the language and checks for consistency or

foreign languages. Input is of textual form, output is/are the detected language/s. Suitable for:

comments or other textual writing.

 Text proofing plugin (see Section 4.5.4) – Checks the word order in sentences. Input is of textual

form, output is a list of sentences with wrong word order and their locations. Suitable for: comments

or other textual writing.

 Comment word plugin (see Section 4.5.4) – Calculates the number of comment words in a source

file. Input is of textual form (comments), output is numerical (number of comment words) and

preferably high. Suitable for: comments, respectively ratio calculations like code lines to comment

words.

 Comment-words:Code-lines plugin - Sets the number of comment words in relation to code lines. In-

put are number of comment words and LOC values, output is numerical as well. Suitable for: meth-

ods, classes, files.

 Complexity:Code-lines plugin – Sets the complexity in relation to the code lines. Input are numerical

values, output is numerical as well. Suitable for: methods, classes, files.

4.3.3.2.4 Specification verification

Software specifications complement the documentation of the escrowed software. To check if the

specifications are in line with the actual implementation and thus proof that they belong together, the

plugins of this group provide verification and validation of the appropriate artefacts. This includes for

example the following plugins:

 Architecture model plugin: Verifies the correct implementation of the software architecture into the

final software. Input is a document, containing architecture details in graphical form (like UML or

written in an Architecture Description Language (ADL) like the Wright ADL109, see [59]) and the

source code of the software. Output is a list containing the differences between both types. Suitable

for: classes, files, packages, the entire project.

 Architecture description plugin (see Section 4.5.3.2): Checks if the textual description of the

architecture complies with the implementation. Because the structure of the implementation can be

tested with the Architecture model plugin, only the textual components of both architecture and

source code will be examined here. Thus the input consists of the (textual) architecture document

and the source code comments, the output again will be a list, containing the differences between

both types. Suitable for: classes (if the architecture document is partitioned into equivalent

sections), files, packages, the entire project.

109

 http://www.cs.cmu.edu/~able/wright/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 131

Copyright TIMBUS Consortium 2011 - 2013

4.3.3.2.5 External references

References to external binaries, like libraries or Web Services, need special attention when it comes to

Software Escrow, especially regarding hiding source code in libraries. It is important to check that all external

references are available, or in case of Web Services to make sure that they are part of the container put into

escrow. This module provides rule base evaluation as it checks for occurrences in the source code. These

specific occurrences (see also Section 4.1.3.4) are checked by plugins like:

 Non-standard libraries plugin – Check for usage of external libraries that were used in the software.

External libraries are libraries that have to be included separately (e.g. by an import statement in Ja-

va). Input consists of source code and libraries. Output is a list of occurrences where external librar-

ies are called. Additionally the license used in the library can be automatically detected. Suitable for:

entire project.

 System calls plugin – Check for system calls. Input consists of source code, output is a list of system

call occurrences. Suitable for: classes.

 Binary call plugin – Check for binary calls, e.g. calling an executable file or also a script or batch file

from within the source code, independent of the availability of the called binary. Because this call

references another program or source code, it has to be checked separately. Input consists of source

code and the binary or script called (if available, e.g. if the commands do not get executed from with-

in the source code already), output is a list of occurrences in the source code. Suitable for: classes.

 Web service call plugin – Check for a Web service call. Input consists of source code, output is a list of

Web service calls from within the source code. Suitable for: classes.

4.3.3.2.6 Build environment

The source code put into escrow also has to be compilable in order to guarantee its full functionality and

compliability with the software used by the customer. Compiling the sources is also an important

requirement for many other plugins. For example, the following plugins can be added to this group:

 Compiler plugin – Checks if all necessary compilers are available by compiling the software. Input is

the source code of the entire project and its compilers as well as a compile script (e.g. ant build file

or make file). Output is a runnable binary of the software that has to be verified against the

customer’s version of the software.

 Operating systems plugin – Tests the software on the operating systems it was designed for.

Because the framework only runs on one system at a time, usage of virtual machines is

recommended. Inputs are the compiled binaries of the software; output is a list of operating

systems the tests failed on.

 Runtime plugin – If a specific runtime is necessary for the software, this plugin checks if it is part of

the artefacts and if it works. Thus it needs the runtime as well as the compiled software as input to

check against, and delivers a list of errors as output.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 132

Copyright TIMBUS Consortium 2011 - 2013

 Licenses plugin – Licenses for libraries or the build environment are probably needed for further

development. Therefore this plugin checks if the needed licenses are part of the artefacts. Input are

the licenses agreed on in the escrow contract. Output is a list of found licenses, which includes

possible unknown licenses, and the classes they were found in.

 Release plugin – The software put into escrow has to be the same as the software run by the

customer. Thus it has to be verified that both are equal. For this the sources at the escrow agent

have to be built and compared to the binaries delivered to the customer. Input are the software

sources and the release from the customer, output are the different files of both versions.

4.3.3.2.7 System documentation

Documentation of software is necessary to provide access to considerations and decisions made during the

development in natural language. It is especially important if the software in question has to be maintained

and possibly enhanced at an unknown time in the future by a programmer with unknown programming

experience. Thus the documentation has to be easily readable and easily understandable. Plugins supporting

these attributes can be for example:

 Readability plugin (see Section 4.5.3.3) – Indicates how easy text can be read. Input is the

documentation in textual form, output a numeric value. Suitable for: textual writing.

 Language detection plugin (see Section 4.5.4) – Detects the language and checks for consistency or

foreign languages. Input is the documentation in textual form, output is/are the detected

language/s. Suitable for: textual writing.

 Word order plugin (see Section 4.5.4) – Checks the word order in sentences. Input is of textual form,

output is a list of sentences with wrong word order and their locations. Suitable for: textual writing.

4.3.3.2.8 Data sources

Data sources like databases can be a major part of software, e.g. library software depending on a book

database. Thus storing a proper version of the database with the other escrow artefacts is important. Plugins

of this group therefore have to test the data sources to verify that they will still be functional when the

software and its sources are delivered to the customer. These plugins can be for example:

 Data source verification plugin: Verify the software’s data sources like databases for their availability

and check specific attributes, like schema or stored procedures. Input are the data sources, output is

a list of incorrect data sources that need further attention. Suitable for: data sources.

4.3.3.2.9 Code obfuscation

As mentioned in Section 4.1.3.3, code obfuscation in Software Escrow is not recommended. If there is still

functionality of the code obscured, the support of the plugins in this group is needed. Amongst them are for

instance:

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 133

Copyright TIMBUS Consortium 2011 - 2013

 Code obfuscation plugin (see Section 4.1.3.3): A plugin checking for code obfuscating techniques in

the source code, like pattern matching for meaningless variable names. Commonly used obfuscation

names like character concatenation (e.g. “aaa”) can be blacklisted, while variable, method, or class

names can also be checked for meaningful words with a dictionary. Input is only the source code of

the software. The output contains a list with occurrences and which obfuscation method was used.

Suitable for: the entire project, method, class, file, package.

4.3.3.3 Reports

The reports of the Escrow Framework are outputs generated for supporting a reviewer in deciding which

artefacts need special attention. Thus the reports need to summarize the findings of the framework

compactly. We suggest three different kinds of output:

1. Top ranking: A list of artefacts, e.g. classes or packages, which received the worst measurement

values in its project. Each artefact listed is therefore a “top-ranked” candidate to contain parts that

can lead to understanding problems or increased maintenance effort when the software has to be

redeployed.

2. Threshold compliance: A list of artefacts, e.g. classes or packages, which exceed or fall below the

thresholds defined in the agreement (e.g. the code coverage of test cases is below 70%). Again each

artefact listed is a candidate to contain parts that can lead to understanding problems or increase

maintenance effort when the software has to be redeployed.

3. Rule violation: A list of artefacts that violated a rule, e.g. a class containing a Web service call. The

difference to the other reports is that with rule violation there is no ranking. Each class listed is an

equally interesting candidate that contains one or more violations which can lead to understanding

problems or increase maintenance effort in the future.

A combined measure, including different measurements, can be obtained by using utility analysis [60]. With

this method essential measures can receive a higher weight than less important ones. Based on the result of

this weighting, projects can be compared with each other more easily.

4.4 Phase III – Redeployment

4.4.1 Overview

The redeployment phase is the last phase in the lifecycle of a Software Escrow agreement. Its main task is to

ensure the quick release of the deposit material to the software user in case a trigger event occurs. Its aim is

to prevent the downtime of the crucial business process the Software Escrow agreement was signed for. In

the planning phase and after the risk analysis all releasing events are stipulated in the escrow agreement. In

case one of the trigger events occurs the escrow agent follows the release proceedings and examines the

occurrence of the event. When the result is positive he hands over the material to the software user. As the

escrow agreement contains the software user’s right regarding the released materials it enables him to

continue his business.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 134

Copyright TIMBUS Consortium 2011 - 2013

4.4.2 Release of the escrowed materials

The release of the deposit material depends on the occurrence of one of the contractually established

trigger events. Different Software Escrow agreements can contain different trigger events depending on the

interests of the contracting parties which must be covered. Therefore, it is necessary to determine under

which circumstances the source code should be handed over. Besides a trigger event, which is in favour of

the software user, some escrow agreements may contain specific contracting previsions which allow

releasing the deposit materials to the software developer (under specific circumstances described below).

4.4.2.1 Release Events

The risk of insolvency of the software developer is one of the most important reasons for the software user

to sign an escrow agreement. So the release/trigger event formulated in the Software Escrow agreement is

the opening of bankruptcy proceedings over the assets of the software developer. It is important that in the

Software Escrow agreement this trigger event is defined very precisely. Hence, it must be clear that the

request for the opening of bankruptcy proceedings over the assets of the software developer is no trigger

event itself. The release of the source code and the deposit material requires a prior decision of the

competent insolvency court to open the bankruptcy proceedings. Another trigger event that should be

established is the dismissal of the opening of bankruptcy proceedings due to lack of assets. In both cases it is

crucial for the escrow agent that the escrow agreement specifies which documents must be submitted to

demonstrate the occurrence of the trigger event. The escrow agent must know if an extract of the trade

register meets the requirements or if the existence of the trigger event must be proved through a legally

binding decision or even a notification of the software developer.110 As the last mentioned condition requires

the active participation of the software developer to enable the release of the source code and the deposit

materials, it is not recommendable to include it. The software developer might not be interested in fulfilling

this requirement, with the consequence that the software user might not get the materials or has to initiate

time-consuming and costly legal proceedings against the developer.

When the software developer committed himself to provide computer documentations developed in the

future, this contract clause is not insolvency-proof. According to § 91 gInsO it is not possible to acquire rights

in objects which form a part of the assets involved in the insolvency proceedings after the insolvency

proceedings have begun. However, a disposal under a condition precedent111 regarding future things or

rights shall be insolvency-proof in case the condition occurs after the opening of the insolvency proceeding,

if the item in question has already been created before the opening112. Hence, rights to adapt already

existing software can be assigned in an insolvency-proof way under a condition precedent, the trigger

event.113 At least in Germany it is important not to mention insolvency of the software developer explicitly as

110

 Schneider, Handbuch des EDV-Rechts(2009)
4
 M Rz 122 f.

111
 A contractually determined event must take place before something else occurs.

112
 BGH IX ZR 162/04 MMR 2006, 386 = CR 2006, 151 = GRUR 2006, 435 = NJW 2006, 915.

113
 Hoeren, IT-Recht 10/2012, 323 f, http://www.uni-muenster.de/Jura.itm/hoeren/materialien/Skript/Skript_IT-

Vertragsrecht_Oktober_2012.pdf (6.12.2012).

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 135

Copyright TIMBUS Consortium 2011 - 2013

a release event because German Insolvency law114 establishes it is not possible to limit the insolvency

administrator’s right to choose whether to fulfil or to reject performance of the contract. Therefore, clauses

which contain the explicit mentioning of insolvency of the software developer as a release event are not

insolvency-proof. In case of an international contract, clauses which exclude the insolvency administrator’s

right to option established in § 103 gInsO, would infringe the German public order principle determined in

Art. 6 EGBGB.115

It is also possible that the software company is liquidated and no longer exists. The liquidation of the

software developer’s company is a trigger event which must be defined as release event in the escrow

agreement.

The escrow agreement should also contain the cessation of the software developer’s business or the part of

his business which is connected with the software for which the escrow agreement is established as trigger

event. A similar case is the assignment of intellectual property rights in the material to a third party which

does not enter into the existing escrow agreement or agree a new escrow agreement with the user within a

predefined period of time. In case the third party enters into the existing escrow agreement or offers to sign

a new escrow agreement with the user, the refusal of the user to accept this offer of the third party within a

certain period of time after being notified, shall not constitute a release event.116

The unjustified refusal of the software developer to maintain the software or to maintain the software

through a third party as the fulfilment of an existing maintenance contract or as obligation of the software

licence agreement is a release event. The releasing process requires the user to notify the software

developer. If the software developer fails to remedy such notice of default within a reasonable time, the

escrow agent has to fulfil his releasing obligation.117

The unjustified denial to adapt or change the software to provide the interoperability of the software with

other software programs or a new hardware must be explicitly mentioned as releasing event, because the

safeguard of the interoperability is a part of the license contract. This clause does not contain debugging

because debugging is part of the maintenance contract. The refusal of the software developer to program

new functions or to improve existing functions which is not included in the debugging obligations established

by the maintenance contract, does not constitute a trigger event, in case the changes are not necessary to

provide interoperability of the program.118

In case of the existence of a notarial certificated document which contains the agreement of the software

developer to release the deposit materials to the software user, the escrow agent can hand over the

material to the user.

114

 § 119 gInsO.
115

 See Graef, Insolvenz des Lizenzgebers und Wahlrecht des Insolvenzverwalters – Lösungsansätze aus der Praxis, ZUM

2006, 104 (105); Abel, Filmlizenzen in der Insolvenz des Lizenzgebers und Lizenznehmers, NZI 2003, 121 (128); Straßer,

Gestaltung internationaler Film-/Fernsehlizenzverträge, ZUM 1999, 928 (933).
116

 See NCC, Single Licensee Software Escrow Agreement,
http://www.nccgroup.com/Libraries/Escrow_Agreements_Added_Feb_2011/SL_Nov07.sflb.ashx (04.04.2012).
117

 Karger in Kilian/Heussen Rz 107 f.
118

 Wolner in Hausmaninger/Petsche/Vartian 360 ff.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 136

Copyright TIMBUS Consortium 2011 - 2013

Another trigger event could be the submission of a final judgement with regard to interlocutory injunction to

discharge the consent of the software developer to release the deposit material to the user.119 Decisions in

arbitration proceedings should have the same effect.

As mentioned above, it is also possible that the Software Escrow agreement contains specific trigger events

whose occurrence leads to the release of the source code and the deposit materials to the software

developer. One of the trigger events can be the agreement of the software user to hand over the deposit

material the software developer. This agreement must be documented in a notarial certified document

which is sent to the escrow agent. The escrow agent has to handover the deposit material to the software

developer in case a final judgement or a decision in arbitration proceedings determined this obligation. If the

contracting parties have agreed that the software developer can use the deposit material as a backup in case

of disaster, the escrow agent has the obligation to make a copy of the deposit material at the expense of the

software developer and hand it over to him. The originals of the deposit material must remain with the

escrow agent.

The termination of the Software Escrow agreement should not lead to the release of the deposit material to

the software developer. In case of contract termination, the escrow agent has the obligation to destroy the

deposit material.

In case the contracting parties decide a change of the escrow agent, the prior escrow agent has the

obligation to deliver the deposit materials to the new escrow agent who is previously designated by software

developer and software user.

4.4.2.2 Release process

It is very important that the Software Escrow contract contains the determined proceeding the escrow agent

has to follow in case of the occurrence of one of the trigger events. Therefore, the documents which must be

provided to prove the occurrence of the trigger event must be explicitly mentioned. The escrow agent has

the obligation to examine them and to decide on base of the document presented if the handover should be

carried out or must be denied.

The trigger event established for the handover of the deposit material to the software user can be

distinguished into hard or soft criteria. The first category is called hard criteria because the facts can be

proved by submitting certificate documents which if necessary can be examined by a notary. Soft criteria are

technical issues or questions regarding the content of the software or contractual obligations. The soft

criteria cannot be proved alone by the presentation of documents, because the occurrence of one of these

soft criteria may not be documented in a certificate document.120

The software user has to inform the escrow agent about the occurrence of a releasing event. How this

notification has to take place will be explained below. The notification must contain a substantiated

description of the trigger events as well as detailed information about the continuing entitlement to use the

119

 Böhmer, „Hinterlegung“ von Software, NJW 1998, 3321 (3323).
120

 Schneider, EDV-Recht M Rz 119 ff.

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=interlocutory&trestr=0x401
http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=injunction&trestr=0x401

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 137

Copyright TIMBUS Consortium 2011 - 2013

software. The software user has to provide the necessary documentations to prove the occurrence of the

trigger event121.

In case of the opening of bankruptcy proceedings over the assets of the software developer or the dismissal

of the opening of bankruptcy proceedings due to lack of assets, the software user has to submit the original

or a certified copy of the enforceable decision of the applicable court.

When the liquidation of a business is decided and the liquidation resolution is registered in the commercial

register, the software user has to present a certified extract from the Commercial Register.

The software user has to prove the cessation of business or part of his business which is connected with the

software for which the escrow agreement is established and that the software developer was not able to

furnish an equivalent replacement within the set period time.

The case of an unjustified refusal of the software developer to maintain the software can be proved by the

software user by submitting a registered letter with acknowledgment of receipt of the user to the software

developer with the substantiated request to fulfil the contractual obligations resulting from the software

maintenance contract.

The user should present the same piece of evidence in case of an unjustified denying to adapt or change the

software to provide the interoperability of the software with other software programs or a new hardware.

To prove the agreement of the software developer to release the deposit material to the user, the user has

to provide the prior written approval of the software developer. For purpose of evidence it is advisable that

the consent of the software developer is presented in a notarial certificated document.

In case of a final judgement with regard to interlocutory injunction to discharge the consent of the software

developer to release the deposit material to the user, the user must submit this document to the escrow

agent.

The notification of the trigger event must contain the signed confidentiality obligation of the software user

regarding the content of the deposit material. In each case of violation of the confidentiality obligation the

contractor is liable for, the contractor incurs a contractual penalty. This penalty is incurred regardless of

whether damage is actually caused or not.122

The escrow agent is obliged to inform the software developer in case the user claims that the trigger event

has occurred.123

The escrow agent is authorized to release the deposit material to the software developer in case the

software developer does not contradict it immediately or at least within 14 workdays from the day a copy of

the releasing request of the software user was transmitted to him.124 The denial of the occurrence of the

trigger event must take place in written form containing the following details:

 Substantiated description why the claimed release event did not take place in the opinion of the

software developer.

121

 Wolner in Hausmaninger/Petsche/Vartian 361.
122

 See Grapentin-Noerr, Software-Lizenzvertrag (Kauf), in Weise/Krauß (ed), Beck'sche Online-Formulare

Vertragsrecht
22

 (2012) Fn 34.
123

 Wolner in Hausmaninger/Petsche/Vartian 361.
124

 Grützmacher, Hinterlegungsvereinbarung, in Redeker (ed), Handbuch der IT-Verträge (2010) Rz 80.

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=interlocutory&trestr=0x401
http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=injunction&trestr=0x401

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 138

Copyright TIMBUS Consortium 2011 - 2013

 The software developer has to provide all adequate documents which are necessary to prove the

non-existence of the trigger event.

When the escrow agent receives within the above mentioned timespan the statement of opposition of the

software developer, he shall have the on-going obligation to store the deposit material. The escrow agent

shall notify the software user immediately about the existence of the statement of opposition and submit it

to the user. The escrow agent is not allowed to hand over the material to the software user. The release of

the deposit material can only be carried out when an irreversible final arbitrament of an arbitration court is

made, which indicates that the source code and the deposit materials have to be hand over to the software

user. The release of the deposit material can also take place when the software developer subsequently

agrees to it125 In case of the release of the deposit material the escrow agent has to hand it over to the

software user.

In case of a handover of the deposit material to the software developer in the event of the agreement of the

software user, the escrow agent can release the materials without the obligation of giving prior notice to the

software user.

If the software developer needs the deposit material as a backup, the escrow agent has to inform the

software user of the fact that he will make copies of the deposit objects and hand these copies over to the

software developer. As the originals of the material remains with the escrow agent the handover of the

copies has no effect to the escrow agreement itself. Therefore, the announcement of hand over a copy to

the software developer serves only to provide this information to the software user. As he has already

agreed previously that the software developer can use the deposit material as a backup he has no possibility

to deny the handover of the copies. The copies will be made at the expenses of the software developer.

4.4.3 Information-/notification obligations

The software user has the obligation to inform the escrow agent about the occurrence of any of the above

established trigger events. The notification has to be given in a closed and sealed envelope either by

registered letter with acknowledgement of receipt126 or by hand delivery against receipt. Then the escrow

agent has to fulfil his obligation to notify the software developer about the announcement of the software

user that a trigger event has occurred. The notification is essential to give the software developer the

possibility to dissent the handover of the deposit material. The proceeding and form is described above.

In general, any notification has to be in writing in order to prevent the occurrence of problems regarding the

burden of proof. In urgent cases the parties should be informed orally in advance.

The escrow agent must inform the other contracting party, if one of the parties does not fulfil their

contractual obligations concerning the payment of the fees for depositing and verifying. Non-payment

should not lead to the end of the escrow agreement. Therefore, the other party must be able to intervene.

125

 Wolner in Hausmaninger/Petsche/Vartian, 361 f.
126

 See Bömer, NJW 1998, 3321 (3323).

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=arbitrament&trestr=0x401

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 139

Copyright TIMBUS Consortium 2011 - 2013

The escrow agent is obliged to inform the software developer in case that the user claims that the trigger

event has occurred.127 The software developer must be able to respond within a reasonable period of time

(please see above Section 4.4.2 for detailed information concerning the release of the escrowed material).

In case the escrow agent is obliged to make the deposited material available to third persons by a judicial or

administrative decision, the agent must immediately inform the software developer as well as the user.128

4.5 Related work

During the discussion and agreement on the requirements for a software project different objectives are

agreed upon. To fulfil some of the objectives measurements will be necessary. These quality measurements,

respectively their values, shall help to agree upon certain minima/maxima or ranges which the software has

to comply to. Different measurement approaches, including statistic measurements based on the attributes

of a source code and rule-based measures checking if the source code adheres to certain rules, will be

described in more detail below. This section concludes with the presentation of a broader approach,

focusing on the maturity of software for reuse.

4.5.1 Statistic measurements

Statistic code metrics can be used as first reasonable and easily computable indicators to see if the

software’s underlying source code has unwanted defects, like too many lines of code that indicate a high

software complexity.

Lines of Code (LOC) as the most prominent measurements counts the number of lines a certain file has. A

related metric can be found in method lines of code, which can be used to find methods that are too long to

be understandable. There are different measurement methods including or excluding empty lines or

comment lines. Lines containing only a curly brace, like it is common after a method declaration, usually also

count as coding line, although this can be subject to discussion. In this document, empty lines and comments

do not count as code, so a LOC measure only includes lines interpreted by the compiler. The only exception

is made with the NCSS (non-commenting source statements) measure, which is provided by JavaNCSS129 and

differs to LOC in the tests. Because different programming languages need a different amount of space to

state the same algorithm, the lines of code measure is not ideal for comparing implementations in different

languages. A programmer’s skills also influence the number of lines he uses for an implementation. Thus, the

comparison has to be done carefully and possibly only within similar environments.

According to [61], large files contain a high number of defects. A high LOC value can therefore be an

indicator for low software quality. In [62] the source line code metric was one of the most interesting metrics

127

 Wolner in Hausmaninger/Petsche/Vartian 361.
128

 Wolner in Hausmaninger/Petsche/Vartian 359.
129

 The used implementation, provided by JavaNCSS, has an explanation what is counted and what not:

http://www.kclee.de/clemens/java/javancss/#specification.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 140

Copyright TIMBUS Consortium 2011 - 2013

to evaluate quality and results were similar to those of the manual evaluation done by an expert, although it

has to be mentioned that only one single expert was used for the evaluation.

Another commonly used measure to determine maintainability of source code is the Cyclomatic Complexity

developed by Thomas J. McCabe in 1976 [63], based on the idea that humans can understand source code

only until a certain amount of complexity of the code is reached. Instead of looking only at the syntactic

elements in it, source code is seen as a directed graph with nodes and edges, nodes representing commands

and edges representing direct connections between commands. With the following formula the complexity

of graph g can be computed.

 ()

e being the number edges, n the number of nodes, and p the number of connected components. According

to McCabe a “reasonable, but not magical” [63] upper limit for the cyclomatic complexity is ten. When

measuring source code with many if-clauses (like a switch statement), the counter increases by one for each

statement. Therefore the upper bound has to be set carefully, depending on what kind of code has to be

evaluated. For a metric similar to the cyclomatic complexity, see also Halstead’s software metrics in Section

4.5.3.1. These metrics include program volume or program difficulty and look at code from another point of

view.

What can also be used as a statistic measurement is Code Coverage: It specifies how many lines of a source

code are tested. For this an applicable tool usually highlights the lines/statements or parts that were

executed during a test case in another colour than the ones that were not executed. The impact of code

coverage is controversial, see for instance [64].

4.5.2 Rule-Based measurements

Rule-based measurements usually have a list of rules the code must not violate. Known tools building on this

approach can be found in Checkstyle130, FindBugs131 or PMD132. As it will be shown later in Section 4.6.2,

these tools can be useful to find source code passages that might contain bugs or are difficult to understand

because they do not stick to common coding rules.

Checkstyle, a static code analysis133 tool, is a Java code analyser built for automatically checking if source

code adheres to given coding standards. With this, the use of coding guidelines like the Java Code

Conventions can be tested. Checkstyle can check for self-defined or already implemented issues, like design

problems, duplicate code, or bug patterns. Analysing documentation like Javadoc is also supported.

Following the comparison of [65], Checkstyle targets coding conventions like naming, comments or format

conventions. More focusing on bad practices [65] is PMD, which analyses source code to find behaviour that

might lead to problems over time. It can find unused variables or empty catch blocks and helps to keep the

130

 http://checkstyle.sourceforge.net/
131

 http://findbugs.sourceforge.net/
132

 http://pmd.sourceforge.net/
133

 Static code analysis is analysing the code without actually running the build software.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 141

Copyright TIMBUS Consortium 2011 - 2013

code tidy. FindBugs on the other hand addresses, as its name suggests, potential bugs. The developers of

FindBugs discriminate between style checkers (like the tools mentioned before) that examine code

according to style rules and bug checkers on the other hand. The latter analyse code in order to find

violations of specific correctness properties which may cause the program to misbehave at runtime [53].

Thus, they extend the checking of a compiler and are able to catch errors the compiler ignores.

4.5.3 Readability

Readability denotes how easily a text can be read and understood, which has to be distinguished from

legibility, which measures the appearance of text, like the recognisability of characters. Focusing on

software, two kinds of readability were found to be interesting: source code readability, which addresses

machine readable text, and text in natural language, which subsumes source code documentation like

comments as well as software documentation, like technical writings. A third method, which can be located

between the two, evaluates what comments, respectively documentation, and source code have in

common, e.g. if the comments contain an explanation for the following code or vice versa. Section 4.5.3.2

focuses on these approaches.

4.5.3.1 Source code readability

Maintainable software has many attributes it has to adhere to, one of them being an easily understandable

source code. The programmer who writes the code has to make sure that his chain of thoughts can outlast

the time the source code is kept in escrow. Besides natural language explanation in form of comments,

which will be discussed in Section 4.5.3.3, the most appropriate way is to write source code that can be

easily understood.

There have been many ideas on how to provide easily readable source code, that are targeting complexity or

volume and do not mention readability explicitly. This section on the other hand deals with work that

explicitly focuses on readability, sometimes relying on basic statistic code metrics itself.

The most exhaustive analysis was done by Buse and Weimer in [66]. Their approach sees complexity and

readability as not being closely related, with complexity being essential and readability being enhanceable,

as it can be addressed more easily. Moreover, in their previous work [67], they even propose that readability

of code is not related to the size of the code fragment. Their automatic evaluation is based on a survey

among 120 students with different experience evaluating 100 code snippets, showing that there exists a

correlation between readability of code and conventional software quality metrics. With this they argue

that, e.g. average line length is an important factor regarding the understanding of source code.

Because the provided readability tool was only built to evaluate short code snippets with a few statements,

larger scale experiments were impractical to do. Nevertheless, the listing/ordering of code quality features

that correlate with higher and lower readability can be interesting for further experiments.

Using the manually completed survey of [66], Posnett et al. [68] pursued another approach. They make use

of the Halstead software metrics [69], including metrics like Program Volume, Difficulty and Effort-To-

Implement. Contrary to the cyclomatic complexity proposed by McCabe (see also Section 4.5.1) these

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 142

Copyright TIMBUS Consortium 2011 - 2013

metrics are based on lexical measures, namely the number of total/unique operators (/) as well as the

total/unique operands (/). Operators include e.g. methods, operands on the other side are e.g. method

arguments. Metrics are simple equations, containing these objects:

 Volume: , with N being the Program Length

 Difficulty:

 Effort:

Their results show that readability, as explained by Buse and Weimer, can be more easily measured by using

Halstead’s metrics, respectively their proposed model, which also includes entropy and the size of the

snippet.

This model was observed to fit the data reasonably well and even outperform the model Buse proposed. It is

worth mentioning that Halstead’s work and its fundamentals have been criticized a few years after their

publication [70] because of Halstead’s misapplication of cognitive psychology results. Nevertheless, the

proposed metrics are very useful for this application although they are not commonly used as can be seen in

the low number of tools that support their calculation. Therefore implementing a tool to calculate Volume or

Effort had to be made from scratch (cf. Section 4.6.2).

Supporting the use of the Halstead metrics, Coleman et al. [71] argue that Volume and Effort metrics are the

best predictors of maintainability for their test data. They propose a maintainability metric, based on

average Effort, average Volume, average extended Cyclomatic Complexity, average lines of code and

percentage of comments. Similar to the Halstead metrics, the maintainability index MI is often not

implemented by software quality tools. The only implementation found was in Microsoft’s Visual Studio134.

4.5.3.2 Comment and code combination

Programming rules are instructions for programmers to develop homogenous code. Code defects can be

introduced more easily if not all involved coders adhere to the guidelines so an automatic evaluation of how

well these rules are adopted can help to develop higher quality code. Research has been done to mitigate

these risks and find similarities between comments and code. One example for this research is the work of

[72], which extracts implicit programming rules without prior knowledge about the software. This is done by

using frequent itemset mining, with which association rules are generated subsequently. With these

methods, violations between the extracted rules and the source code can be detected.

In [73], formal specifications of what code is doing, is in the focus of research. Formal specifications are

necessary to find defects and to formally describe the program as well as its behaviour afterwards. These

specifications can be represented as a finite state machine. The specification mining method they use

analyses actual program behaviour and can construct formal specifications of correct program behaviour

from that. Their specification miner estimates the quality of code fragments, lifts those quality judgments to

134

 According to http://www.projectcodemeter.com/cost_estimation/help/GL_maintainability.htm VS seems to be

using a slightly different formula for the calculation.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 143

Copyright TIMBUS Consortium 2011 - 2013

traces, which are examples of program behaviour like terms of sequences of function calls, and finally

weights each trace. The produced output is a set of candidate specifications which have to be evaluated by a

human. With their approach they can improve the performance of existing miners, decreasing the rate of

false positives.

Focusing on traceability links, which can be described as links between different software artefacts, is a

publication about recovering these links in code as well as in free text documents like documentation [74].

One example of use of these links is maintenance, which brings this method also into the focus of Software

Escrow. The work mainly analyses mnemonics for identifiers. For this it uses the extracted source code

component identifiers as a query to retrieve documents that are relevant for this component. An important

assumption is that programmers use meaningful names. Both applied Information Retrieval (IR) models (one

probabilistic model and one vector space model) perform similarly well and the results support the

hypothesis that IR provides a practicable solution to semi-automatically recovering traceability links between

code and documentation. It is worth mentioning that comments were not taken into account for this study,

only mnemonics used for classes, attributes, methods, and parameters were regarded.

4.5.3.3 Natural language text readability

The readability of text has been a task for researchers for a long time. As early as in the 1920s, vocabulary

difficulty and sentence length was used to predict how easily a text could be read. But it would take until the

late 1940s, when Rudolf Flesch published his work that set the ground for his now well-known readability

formula and its successors. By the 1980s there existed over 200 of these formulas and over a thousand

published studies that backed up their theoretical and statistical validity. [75]

Flesch developed his readability formula, which was the most widely used formula at this time, containing

two parts. The first part is built by the Reading Ease formula, which predicts the reading ease on a scale

from 1 – 100 with higher value denoting better readability. The second part predicts human interest by

counting the number of personal words (pronouns and names) and personal sentences (like quotes or

explanations). The first part holds interest for applying it on source code documentation, or more precisely

comments, so it will be explained in more detail.

Basically, the formula needs the number of words, syllables and sentences of the text, respectively the

average number of each. Flesch stated that titles, headings, section or paragraph numbers, captions, date

lines and signature lines should be skipped. Regarding syllables, he stated that they should be counted as the

words are pronounced; words on the other hand are abbreviations, numbers, or hyphenated words. [76] The

figures have to be put in the formula:

with ASL being the average sentence length (or the number of words divided by number of sentences) and

ASW being the average word length in syllables (or the number of syllables divided by number of words). A

score below 30 indicates that the text is very difficult to read, whereas a score above 70 indicates fairly easy

to very easy readability. [75]

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 144

Copyright TIMBUS Consortium 2011 - 2013

Another popular readability formula, based on Flesch’s formula and developed by a study commissioned by

the U.S. Navy in 1976, is the Flesch-Kincaid formula. It provides a grade level, denoting the years of

education one needs to understand the text. Using the average sentence (ASL) and word (ASW) length of

Flesch’s formula, the level is calculated by:

Both formulas are implemented in Microsoft Word, which already includes a method to count syllables and

words and was therefore used for the calculations.

Another approach, combining NLP, machine learning, statistics and program analysis, was done in [77]. The

authors extracted source code comments containing keywords like “lock”, “acquire”, “release”, or “hold”,

which were then partly manually labelled accordingly (e.g. lock-related, call-related, etc.). With this labelled

data a classifier was trained to produce a model with which diverse comments can be classified because

programmers tend to write similar comments. Subsequently the automatically classified comment data got

manually evaluated due to the lack of a proper ground truth. Even though the focus was only on certain

keywords that indicate important steps in the programming, the analysis showed good accuracy. Extending

this approach on other important comment topics would be of great interest.

In [78] an approach to evaluate source code by combining both language quality assessment and consistency

between source code and its comments is presented. For this Javadoc comments get extracted and are

marked-up so the following NLP tool is able to process it easily. GATE135 is used for this task, and the

JavadocMiner is implemented as a pipeline, using individual processing resources. Readability of comments

is also analysed using the Flesch metric, which is the least correlated with the number of bug defects. Other

readability metrics, namely Fog Index136 and Flesch-Kincaid Grade Level Score achieve much better

correlation values. The difference is dramatic for all tested examples, although both Flesch-Kincaid and

Flesch metrics are calculated using the same values. Further development of this approach can be found in

[79]. There the authors provide an integration of natural language processing services in Eclipse, a common

Java development environment. The plug-in integrates their developed Semantic Assistants architecture,

which offers semantic analysis services like named entity detection or quality analysis of source code

comments137 by using a Web service.

4.5.4 Comments

A work focusing on the comment density of open source projects can be found in [80]. Its assumption is that

the amount of comments in source code indicates the quality and maintainability of the program. One

conclusion is that comment density is independent of the size of the project as well as of the size of the

135

 A software for text processing, see http://gate.ac.uk/
136

 Robert Gunning developed an equation for grading the „fog“, the unnecessary complexity of text, in newspapers.

 (), where hard words is the number of words with more than two syllables for

each 100 words.
137

 Information on the features can be found on http://www.semanticsoftware.info/semantic-assistants-eclipse-plugin.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 145

Copyright TIMBUS Consortium 2011 - 2013

programmer team size. The average density found in over 5000 projects was 19%, which can be said to be

representing successful projects because the authors only used active projects with activity in the previous

year.

A totally different point of view is described by [81], which is using descriptions of how source code evolves

over time, called evolutionary annotations. The method developed includes an automatic creation of these

annotations, out of change logs, defect tracking systems and mailing lists. The difference to normal

comments is that these methods explain the change until now and not the current role of the system.

Regarding text categorization and thus determine the language a text was written in, the paper of Cavnar

and Trenkle [82] deals with n-grams. N-grams are n-character slices of a word138, generated for each text

that has to be categorized. With these slices a profile gets generated for the document, which gets

compared to profiles from other documents that are already categorized. The shortest (profile) distance

between two profiles indicates the highest similarity, thus the most probable language for the text.

Implementations can be found online139.

Text proofing is also of interest when analysing text in natural language because largely incorrect text

sections will be difficult to understand. Commonly used approaches include the usage of part-of-speech

(POS) syntactic patterns [83] or word sequence patterns that are compared to entries in error corpora [84].

These can be generated by the usage of Markov chains. Markov chains are random processes, depending

only on the current state and not the sequence preceding this state. They can be of different orders,

denoting on how many past states the future state depends (e.g. in a Markov chain of order three the next

word depends on the previously three). Thus in combination with POS tagging and a preliminary n-gram

generation on word level, it is possible to check if the text contains constructs that are not allowed according

to the grammar used.

Another view on comments, concerning malicious behaviour from the documentation’s author, can be found

in [85], where three different methods are presented that are able to identify artificially generated text.

Besides looking for basic lexicometric features, like standard word or sentence length, and the perplexity of

language models, where a high perplexity indicates a fake content, the authors suggest using a variety of

features and techniques, including a method based on a relative entropy measure which captures short

range dependencies between words. It will not be possible to verify automatically if the content of

documentation actually fits, thus a manual evaluation will be necessary. However, if the documents put into

escrow need to be pre-selected, e.g. if there is a vast amount of documentation, these filtering methods

presented in [85] can be of help.

138

 For completeness it needs to be stated that n-grams are more generic, they are a sequence of units drawn from a

longer sequence. For text the units (or levels) are usually words or characters. In the case of text categorization as

described in [82] only characters are used.
139

 E.g. http://odur.let.rug.nl/~vannoord/TextCat/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 146

Copyright TIMBUS Consortium 2011 - 2013

4.5.5 Maturity of software for reuse

The Software Reuse Working Group of NASA’s Earth Science Data Systems proposed a set of Reuse

Readiness Levels (RRLs) in [86]. They also identified nine topic areas that are important for measuring reuse

maturity of software: Documentation, Extensibility, Intellectual Property Issues, Modularity, Packaging,

Portability, Standards Compliance, Support, and Verification and Testing. Each of these areas has at most

nine levels of reuse readiness, ranging from 1 (least mature) to 9 (most mature). For example documentation

on level 1 indicates that there is little or no documentation available, whereas on level 9 there exists

documentation on design, customization, testing, use, and reuse. Mapping the area’s levels to our Software

Escrow approach, most of them can be used to grade the artefacts delivered to the escrow agent. A use case

can be found in the planning phase, in which developer and customer agree on the level of different

artefacts. There are only a few exceptions to the use of levels. Regarding extensibility we can only evaluate

how the software was designed to provide extension possibilities. A demonstration of extensibility as it is

mentioned in level 7 to 9 is not feasible and necessary. The area of support does not make sense in the

domain of Software Escrow, because support contracts have to be dealt with outside of the escrow

agreement. The Verification and Testing area as described in the RRL report, aims mainly at evaluating the

functionality of the software. Level 1 and 2 (“no testing”, respectively “software application formulated and

unit testing performed”) are the only levels reasonable for escrow. The most important aspect about

functionality in Software Escrow is to preserve it, not to check if the software operates as desired. In all

other areas the detail of how much has to be provided in each level increases. Thus it offers a reference

point for the Software Escrow parties and the possibility to agree on the level of detail each artefact has to

fulfil.

4.6 Prototype implementation

A prototypical framework based on the model described in Section 4.3.3 will be presented here. This section

describes practical implementations of the plugins and their usefulness. The implementation of the

framework is built on a Continuous Integration tool, which we extend with additional plugins.

The following Section 4.6.1 describes the system developed. A section about experiments on open source

projects follows in 4.6.2, including results and discussion.

4.6.1 Implementation

The implementation of the prototype was built on an existing framework, namely Sonar140. Because the

model described in Section 4.3.3, respectively the structure given in Figure 34, is generic enough it can still

be applied to this framework. A screenshot of how the overview of a project looks like in Sonar can be found

in Figure 35. It contains a rough summary of the project’s performance. Figure 36 shows the violation’s

overview, which contains links to the classes and their detailed violation reports.

140

 http://www.sonarsource.org/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 147

Copyright TIMBUS Consortium 2011 - 2013

 Figure 35: Overview of project in Sonar

Figure 36: Overview of violations in Sonar

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 148

Copyright TIMBUS Consortium 2011 - 2013

4.6.1.1 System setup

Sonar Version 3.4.1 141, a platform for continuous quality inspection, has been used as base system. It is

written in Java and licensed under the LGPL. The architecture of Sonar is based on the client/server model.

The server manages the results of the analyses and provides a web based presentation of the issues and

measurements found in the examined projects. The client, also called runner, analyses the project and

transmits the results to the server.

The quality of a project is measured using metrics and rules, which produce value results and violations,

respectively. For several languages common metrics and rules are provided out of the box, but it also allows

integration of custom plugins.

4.6.1.2 Sonar Plugins

All of the plugins described in this section are programming language independent. The language used is

taken into account already during the extraction phase (cf. the Container Handler in Figure 34). The plugin

list includes a subset of the plugins presented in Section 4.3.3.2 to showcase the most important and feasible

features.

Sonar provides bundled plugins and metrics which overlap with our requirements, and therefore, some of

these existing plugins have been used without modifications. These include:

 LOC (cf. Sections 4.3.3.2.1 and 4.5.1) - The LOC are reflected by Sonar's Java/Lines of code metric

[87].

 NCSS (Non Commenting Source Statements, cf. Sections 4.3.3.2.1 and 4.5.1) - Sonar does not use

JavaNCSS [88] anymore because of various flaws [89]. An alternative metric in Sonar is the

Java/Statement metric, which does not count import declarations, class and method definitions, etc.

 Cyclomatic Complexity (McCabe) (cf. Sections 4.3.3.2.1 and 4.5.1) - The Complexity method of Sonar

uses McCabe's metric.

 Duplicate Code - The number of duplicate lines is counted by the Sonar Duplicated lines metric.

According to the documentation [90] the detection is done on a per statement basis.

 Prenatal communication (cf. Section 4.3.3.2.1) - PMD, which is integrated in Sonar, provides the

suitable ConstructorCallsOverridableMethod [91] rule.

 Coupling - To determine the coupling, Afferent couplings and Efferent couplings are calculated.

 Cohesion - Sonar's Lack of cohesion of methods is used to measure the cohesion.

For the other measurements which are not covered by Sonar plugins, the following prototypes have been

implemented142:

141

 http://www.sonarsource.org/downloads/, accessed 31.01.2013
142

 Note: The development of the prototype was a continuous process. Thus some of the plugins were not ready when

the experiments were done. The Halstead and Custom Rating Plugin could not be included in the tests. For the sake of

completeness they are mentioned here.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 149

Copyright TIMBUS Consortium 2011 - 2013

 Build Plugin (cf. Section 4.3.3.2.6) - The build plugin raises a violation if it is not possible for the Sonar

runner to execute the build process successfully. The preconditions are that the system the runner is

executed on does meet all required preconditions, like dependencies, compilers in correct version,

etc. To be generic, the plugin executes a custom command in the project root directory (e.g. mvn

install). It then parses the response of this command for (also custom) messages that suggest the

failure of the build. Furthermore the return value of the build command is evaluated.

 Release Plugin (cf. Section 4.3.3.2.6) - This plugin checks if the output generated by the Build Plugin

matches a provided reference. For this purpose two directories are compared, where one is the

build target directory of the Build Plugin, and the other a directory which contains the expected

result. The Release Plugin compares XML files by ignoring the element ordering, as it may differ

between subsequent builds. Zip-compressed files are extracted and contents compared individually.

This is needed because of XML files which are embedded in jar files. Other file types are compared

using the FileUtils helper in the Apache Commons IO library143. For files, which do not have to be

checked for changes (e.g. META-INF files in jars), it is possible to exclude them from comparison.

 Comment Language Detection Plugin (cf. Section 4.3.3.2.7) - The Comment Language Detection

Plugin detects the language of comments and raises a violation if a language other than an allowed

one is found. This is done either on a per-file basis (to minimize false positives because of too short

text) or on a per-comment basis, depending on the configuration. The comments are extracted using

SSLR [92] and analysed using the Java Text Categorizing Library [93], which uses an algorithm based

on n-grams as described in Section 4.5.4. To minimize the rate of false positives, comments are

stripped from HTML elements as well as from Javadoc tags, including associated data. Additionally,

short comments can be either ignored or checked by using a word list (dictionary approach) to

determine if the comment is in the desired language.

 Nonstandard Libraries Plugin (cf. Section 4.3.3.2.5) - This plugin raises a violation if dependencies are

found which may not originate from official sources. For this, the hash values of all jar files in a pre-

defined directory are calculated and looked up in the Maven Central Repository [94]. If the search

does not find a library in the repository that corresponds to the jar file’s hash value, the plugin

assumes that this jar file originates from unofficial sources. For other libraries than jar, the plugin

looks up hashes in the National Software Reference Library144.

 Unsafe Calls Plugin (cf. Section 4.3.3.2.5) - The idea of the Unsafe Calls Plugin is that potentially

dangerous calls like System calls (e.g. calling the copy command of the system), Binary calls (e.g.

calling a text editor or other program from within the source code), or Web Service calls, can be

detected by a text-based search over source files. The plugin raises a violation if one of the provided

regular expressions matches in any of the source files.

143

 http://commons.apache.org/io/api-release/index.html?org/apache/commons/io/package-summary.html
144

 http://www.nsrl.nist.gov/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 150

Copyright TIMBUS Consortium 2011 - 2013

 Comment Text Proof Check Plugin - This plugin uses the LanguageTool [95] to find various issues like

misspellings, wrong grammar, uncommon phrases, etc. in source code comments. The comments

again are extracted using SSLR. It can be specified which language to use for checking the comments

and which aforementioned issues are excluded from the results. As in the Comment Language

Detection plugin, HTML and Javadoc elements and their associated data can be stripped from the

source code before analysis.

 License Check Plugin - The header of each source file is expected to contain some information about

the license under which the according file is published. Those licenses are extracted using the Perl

script licensecheck145, which is part of the Debian devscripts package. For jar files, like libraries, that

contain information on their license, the License Maven Plugin146 is used. Violations informing about

the detected licenses are issued for each source file and summarized in an overview.

 Halstead Plugin - The Halstead Plugin does not yet consider all possible statements, but can be used

to approximate the Halstead metrics Volume, Difficulty, Effort, Time to program and Bugs delivered.

As in languages like Java, not for every component of possible statements it can be unambiguously

determined if it is either operator or operand147, the results may be different compared to other

tools.

 Custom Rating Plugin - The custom rating plugin provides the possibility to calculate a measure using

a custom defined formula that can make use of other measures and violation counts. Measures and

violation counts are replaced and passed to the Math Expression Parser of the Symja project148,

where the formula is evaluated.

4.6.2 Experiments

Different experiments were conducted to evaluate the plugins of the framework. We do not have a ground

truth for each project’s evaluation, containing e.g. Web services that have to be found or languages used in

the comments. For this it would be necessary to examine each project manually, preferably combining

results by multiple judgments regarding the quality of artefacts, as it is common for example in Information

Retrieval evaluation. Because this would exceed the scope of this work, we decided to focus only on the true

and false positives (retrieved) quality attributes of artefacts, leaving aside true and false negatives (not

retrieved). This approach also reflects our intention to the framework: Find as many violations as possible to

present to the reviewer, in order to facilitate and quicken his work.

145

 http://www.beathovn.de/licensecheck, accessed 11.02.2013; Note for the attentive and maybe wondering reader: If

we feed our framework with its own code, the License Check Plugin code would raise an Unsafe Call violation because

of the Perl calling part.
146

 http://mojo.codehaus.org/license-maven-plugin/
147

 http://www.virtualmachinery.com/sidebar2.htm, accessed on 2013-03-21
148

 https://code.google.com/p/symja/wiki/MathExpressionParser, accessed on 2013-03-21

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 151

Copyright TIMBUS Consortium 2011 - 2013

The following Section 4.6.2.1 describes experiments conducted prior to implementing the framework in

order to determine the feasibility of different plugins. The tests in the subsequent Section 4.6.2.2 are of a

different nature, dealing with various projects and evaluating the technical framework as a whole. All

experiments were conducted under Windows 7 Enterprise, 64 bit.

The discussion and interpretation of the experiments in Section 4.6.2.3 analyses the results of the

experiments. Thus the following Sections 4.6.2.1 and 4.6.2.2 only include the raw results without going into

detail what they mean for the scope of this work.

4.6.2.1 Feasibility experiments

For this first part of experiments the sources of Apache Lucene149, an information retrieval software, were

used. A description of the metrics used can be found in Section 4.5, or they reference a plugin in Section

4.3.3.2. The experiments include how to obfuscate code (4.6.2.1.1), the readability of comments (4.6.2.1.2),

and an analysis of complexity and comment length related ratios (4.6.2.1.3).

4.6.2.1.1 Code Obfuscation

For a code obfuscation experiment we tried to generate obfuscated source code and use specific metrics on

it. Because there is no tool to our knowledge that generates obfuscated source code, we were only able to

obfuscate binaries and decompile them afterwards. As mentioned in Section 4.1.3.3, the same problems as

in [56] were faced when trying to do this experiment – decompiling an obfuscated binary is not always

possible or leads to incorrect results. Our experiment also did not succeed due to decompiling problems,

nevertheless we will shortly present it to highlight the problems that can be encountered at a technical

review.

The obfuscator of choice was the open source software ProGuard 4.7150, for decompiling the Java

Decompiler 0.6.0151 was used. ProGuard can only process (binary) jar files; its output is also binary. When

testing with the source code of Lucene, re-creating the source code from the obfuscated binaries was not

possible because the decompiled source code was missing many parts of the original code but included

commented paragraphs with machine code instructions. Thus comparing the metric results to the non-

obfuscated version of the program is hardly possible because for e.g. LOC some methods are missing. For

smaller projects decompilation was easier and resulted in correctly decompiled files. Nevertheless compile

errors occurred (e.g. use of not initialised variables or variable names with special characters). Regarding

commonly used metrics, obfuscated source code does not differ much compared to its non-obfuscated

version. Complexity, Difficulty, Effort or others tend to increase slightly, but not enough to mark source code

definitely as obfuscated.

149

 http://lucene.apache.org/core/
150

 http://proguard.sourceforge.net/
151

 http://java.decompiler.free.fr/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 152

Copyright TIMBUS Consortium 2011 - 2013

4.6.2.1.2 Readability of comments

The experiment regarding readability of comments in source code builds on the assumption that better

readable comments are easier to understand and thus improve the overall source code quality. To

investigate this we looked at the readability-to-comment-words ratio in order to normalize the comments of

each single class and order them.

For this purpose we extended Checkstyle (cf. Section 4.5.2) and extracted both inline comments and Javadoc

annotations. For analysis we needed complete sentences because the sentence length is an important

factor. Thus we changed so called inline comments (comments next to the source code) by placing a full stop

behind them if they had no other lines following. In the case of Javadoc comments we assumed that they

already consisted of full sentences with a punctuation mark. Because implementing a functional Flesch- or

Flesch-Kincaid-Readability module is not trivial, the extracted texts were analysed using the Microsoft Word

Professional Plus 2010 Readability152 tool with a JAVA-COM Bridge153. The readability tool already provides

both implementations for text in English. The comment word number was extracted from Word as well.

The results of the metrics were set in relation to the amount of comment words, which led to the generation

of the following two ratios:

 Flesch Reading Ease : Comment words

 Flesch-Kincaid : Comment words

For the experiment Lucene version 3.2 was used as test project.

To get an overview of the result range, both maxima and minima of the experiments done on Lucene 3.2 are

shown in Table 8 and Table 9. The files are named with their path, starting within the src folder.

Table 8 contains the results for the experiments producing a Flesch-to-Comment-Words ratio, or the Flesch

index normalized by the number of comment words. The first part contains the best performing classes,

starting with the very best. The second part holds the worst performing files.

Table 9 contains the results of the Flesch-Kincaid-to-Comment-Words ratio experiment. Because Flesch-

Kincaid calculates the years of education one needs for understanding the evaluated text, the first part of

the table contains the best performing classes, whereas the second part holds the poorer documented

classes (including classes listed because of the above mentioned Checkstyle bug).

Regarding the ratios, the experiments showed that there are some Java files with a Flesch Reading Ease or a

Flesch-Kincaid grade level of 0.0. In both cases the files were sorted according to the result of the division

(readability value : comment words). Because of a bug found in Checkstyle154 most of the classes that have a

Flesch index of 0.0 describe enum-types. QueryParserConstants however is an interface and

152

 http://office.microsoft.com/en-us/word-help/test-your-document-s-readability-HP010354286.aspx
153

 JACOB is a JAVA-COM Bridge that allows you to call COM Automation components from Java.

http://sourceforge.net/projects/jacob-project/
154

 Checkstyle was found to have problems extracting comments out of files that only describe enum-types. It always

lists such files to have no comments at all.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 153

Copyright TIMBUS Consortium 2011 - 2013

WordBreakTestUnicode_6_0_0 is a normal class, obviously with poor readability results. Regarding the

Flesch-Kincaid grade a higher value means more difficulty (more years of education for comprehension),

nevertheless Microsoft Word measured a value of zero. A reason for this behaviour could not be found.

Altogether the results show that most of the Flesch indexes are roughly between 40 and 60, the average of

the reading ease lies at 44.34, which lies between “fairly difficult” and “difficult” according to [76]. For

Flesch-Kincaid the average years of education to understand Lucene’s comments lies at 10.38, which means

that an average student in the tenth grade (approximately around age 14-16) is able to understand it.

Table 8: Flesch:CommentWords results of readability-ratio experiments for Lucene 3.2

Class Ratio Value

tools\java\org\apache\lucene\validation\LicenseType.java 0.0 : 0 N/A

java\org\apache\lucene\util\Version.java 0.0 : 0 N/A

java\org\apache\lucene\document\FieldSelectorResult.java 0.0 : 0 N/A

java\org\apache\lucene\queryParser\QueryParserTokenManager.java 47.6 : 40 1.1899999

test\org\apache\lucene\search\TestSpanQueryFilter.java 40.1 : 100 0.401

test\org\apache\lucene\index\TestByteSlices.java 39.2 : 98 0.4

test\org\apache\lucene\index\TestPositionBasedTermVectorMapper.java 55.9 : 150 0.3726667

java\org\apache\lucene\index\TermVectorEntry.java 36.0 : 97 0.371134

java\org\apache\lucene\document\LoadFirstFieldSelector.java 35.8 : 98 0.3653061

test\org\apache\lucene\util\TestFieldCacheSanityChecker.java 41.2 : 116 0.35517243

 java\org\apache\lucene\analysis\LowerCaseTokenizer.java 10.0 : 420 0.023809524

java\org\apache\lucene\queryParser\QueryParser.java 52.5 : 2442 0.021498771

java\org\apache\lucene\search\Similarity.java 54.7 : 4720 0.011588983

java\org\apache\lucene\index\IndexReader.java 49.9 : 5692 0.00876669

java\org\apache\lucene\analysis\WhitespaceTokenizer.java 2.9 : 365 0.007945206

java\org\apache\lucene\analysis\ASCIIFoldingFilter.java 55.3 : 9036 0.0061199646

java\org\apache\lucene\index\IndexWriter.java 52.1 : 12536 0.0041560307

test\org\apache\lucene\analysis\TestASCIIFoldingFilter.java 42.0 : 10390 0.0040423484

test\org\apache\lucene\analysis\WordBreakTestUnicode_6_0_0.java 0.0 : 29319 0.0

java\org\apache\lucene\queryParser\QueryParserConstants.java 0.0 : 96 0.0

Table 9: Flesch-Kincaid:CommentWords results of readability-ratio experiments for Lucene 3.2

Class Ratio Value

test\org\apache\lucene\analysis\WordBreakTestUnicode_6_0_0.java 20.9 : 29319 7.128483E-4

java\org\apache\lucene\analysis\ASCIIFoldingFilter.java 6.6 : 9036 7.304117E-4

java\org\apache\lucene\index\IndexWriter.java 9.5 : 12536 7.5781747E-4

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 154

Copyright TIMBUS Consortium 2011 - 2013

Class Ratio Value

test\org\apache\lucene\analysis\TestASCIIFoldingFilter.java 8.0 : 10390 7.699711E-4

java\org\apache\lucene\index\IndexReader.java 10.3 : 5692 0.0018095573

java\org\apache\lucene\search\Similarity.java 9.5 : 4720 0.002012712

java\org\apache\lucene\queryParser\QueryParser.java 8.5 : 2442 0.0034807534

java\org\apache\lucene\index\DocumentsWriter.java 6.7 : 1865 0.0035924932

java\org\apache\lucene\util\OpenBitSet.java 7.1 : 1938 0.0036635706

java\org\apache\lucene\index\SegmentInfos.java 7.2 : 1955 0.0036828644

 java\org\apache\lucene\index\TermVectorEntry.java 12.2 : 97 0.12577319

java\org\apache\lucene\document\LoadFirstFieldSelector.java 12.7 : 98 0.12959184

test\org\apache\lucene\index\TestTermdocPerf.java 14.4 : 98 0.14693877

java\org\apache\lucene\index\TermVectorEntryFreqSortedComparator.java 14.6 : 98 0.14897959

test\org\apache\lucene\search\TestFieldCache.java 14.6 : 85 0.17176472

java\org\apache\lucene\queryParser\QueryParserTokenManager.java 7.3 : 40 0.1825

java\org\apache\lucene\queryParser\QueryParserConstants.java 20.6 : 96 0.21458334

java\org\apache\lucene\document\FieldSelectorResult.java 0.0 : 0 N/A

java\org\apache\lucene\util\Version.java 0.0 : 0 N/A

tools\java\org\apache\lucene\validation\LicenseType.java 0.0 : 0 N/A

4.6.2.1.3 Complexity and comment length

In this experiment we investigate the ratio of complexity of a class and the comment length (or number of

comment words) because we want to see if a class with high complexity is compensated with more

comments. For this we look at the Complexity:Codelines ratio as well as at the CommentWords:Codelines

ratio. Code lines are LOC and NCSS.

For providing the NCSS and cyclomatic complexity values, the tool JavaNCSS version 32.53155 was used. It

needs to be stated that this JavaNCSS version did not work without any problems156, but due to the lack of a

newer or patched version or a comparable tool it was used nonetheless. The LOC value was provided by

CLOC157 version 1.56. The length of comments, which is the sum of comment words, was provided by

Microsoft Word, as in the readability calculations (cf. Section 4.6.2.1.2). The resulting ratios are:

 Comment words : LOC

 Comment words : NCSS

 Complexity : LOC

155

 See http://www.kclee.de/clemens/java/javancss/ for more information.
156

 One error found was a parsing exception occurring when a for-each loop was used. Because of the exception the

program terminated without stating a right NCSS number.
157

 http://cloc.sourceforge.net/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 155

Copyright TIMBUS Consortium 2011 - 2013

 Complexity : NCSS

Regarding the ratio of comment words to code lines, normalization makes sense because the more code

lines there are, the more explanatory comment words there need to be. Of course a high number of words

does not automatically imply that the content of the comment describes the annotated source code lines or

even makes sense. But for a general evaluation, we assume that very short comments are not enough for a

useful description, thus the corresponding classes have to be checked manually afterwards.

Regarding the ratio of complexity to code lines, a low complexity for many LOC is optimal, therefore the ratio

should be rather low. A high result on the other hand indicates that the complexity is proportionally too high

for this amount of code lines.

Table 10: Comment words : LOC results of complexity and comment length experiments for Lucene 3.2

Class Ratio Value

java\org\apache\lucene\search\Collector.java 805 : 9 89.44444

java\org\apache\lucene\index\IndexDeletionPolicy.java 561 : 7 80.14286

java\org\apache\lucene\search\DocIdSetIterator.java 457 : 8 57.125

java\org\apache\lucene\analysis\tokenattributes\PositionIncrementAttribu

te.java
322 : 6 53.666668

java\org\apache\lucene\index\TermPositionVector.java 235 : 5 47.0

java\org\apache\lucene\util\AttributeReflector.java 182 : 4 45.5

java\org\apache\lucene\search\Similarity.java 4720 : 111 42.522522

java\org\apache\lucene\search\Weight.java 576 : 14 41.142857

java\org\apache\lucene\index\TermFreqVector.java 356 : 9 39.555557

java\org\apache\lucene\index\TermPositions.java 394 : 10 39.4

 test\org\apache\lucene\search\spans\TestFieldMaskingSpanQuery.java 124 : 273 0.45421246

test\org\apache\lucene\search\spans\TestSpans.java 171 : 379 0.45118734

test\org\apache\lucene\index\TestFieldsReader.java 218 : 487 0.4476386

test\org\apache\lucene\index\TestTermVectorsWriter.java 161 : 384 0.41927084

java\org\apache\lucene\analysis\standard\UAX29URLEmailTokenizer.java 1273 : 3414 0.3728764

test\org\apache\lucene\search\spans\TestPayloadSpans.java 155 : 427 0.36299765

java\org\apache\lucene\queryParser\QueryParserTokenManager.java 40 : 1228 0.03257329

tools\java\org\apache\lucene\validation\LicenseType.java 0 : 30 0.0

java\org\apache\lucene\util\Version.java 0 : 24 0.0

java\org\apache\lucene\document\FieldSelectorResult.java 0 : 10 0.0

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 156

Copyright TIMBUS Consortium 2011 - 2013

Table 11: Comment words : NCSS results of complexity and comment length experiments for Lucene 3.2

Class Ratio Value

test\org\apache\lucene\search\TestMultiPhraseQuery.java 416 : 0 Infinity

java\org\apache\lucene\search\Collector.java 805 : 8 100.625

java\org\apache\lucene\index\IndexDeletionPolicy.java 561 : 6 93.5

test\org\apache\lucene\analysis\TestASCIIFoldingFilter.java 10390 : 113 91.9469

java\org\apache\lucene\analysis\tokenattributes\TermAttributeImpl.java 135 : 2 67.5

java\org\apache\lucene\search\DocIdSetIterator.java 457 : 7 65.28571

java\org\apache\lucene\analysis\tokenattributes\PositionIncrementAttribu

te.java
322 : 5 64.4

java\org\apache\lucene\search\Similarity.java 4720 : 75 62.933334

java\org\apache\lucene\util\AttributeReflector.java 182 : 3 60.666668

java\org\apache\lucene\index\TermPositionVector.java 235 : 4 58.75

 test\org\apache\lucene\index\TestIndexReaderReopen.java 485 : 762 0.63648295

test\org\apache\lucene\index\TestIndexWriterExceptions.java 506 : 797 0.6348808

test\org\apache\lucene\index\TestStressIndexing2.java 284 : 473 0.60042286

test\org\apache\lucene\index\TestFieldsReader.java 218 : 410 0.53170735

test\org\apache\lucene\index\TestTermVectorsWriter.java 161 : 315 0.51111114

test\org\apache\lucene\search\spans\TestPayloadSpans.java 155 : 363 0.42699724

java\org\apache\lucene\queryParser\QueryParserTokenManager.java 40 : 991 0.04036327

tools\java\org\apache\lucene\validation\LicenseType.java 0 : 11 0.0

java\org\apache\lucene\util\Version.java 0 : 4 0.0

java\org\apache\lucene\document\FieldSelectorResult.java 0 : 2 0.0

Table 12: Complexity : LOC results of complexity and comment length experiments for Lucene 3.2

Class Ratio Value

java\org\apache\lucene\util\AttributeReflector.java 1.0 : 4 0.25

java\org\apache\lucene\messages\NLSException.java 1.0 : 4 0.25

java\org\apache\lucene\store\LockStressTest.java 16.0 : 67 0.23880596

java\org\apache\lucene\analysis\NormalizeCharMap.java 6.0 : 28 0.21428572

java\org\apache\lucene\index\TermPositionVector.java 1.0 : 5 0.2

java\org\apache\lucene\analysis\CharStream.java 1.0 : 5 0.2

java\org\apache\lucene\document\FieldSelector.java 1.0 : 5 0.2

java\org\apache\lucene\index\InvertedDocEndConsumerPerField.java 1.0 : 5 0.2

test\org\apache\lucene\util\TestVersion.java 2.0 : 11 0.18181819

test\org\apache\lucene\index\TestRollingUpdates.java 8.0 : 45 0.17777778

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 157

Copyright TIMBUS Consortium 2011 - 2013

Class Ratio Value

test\org\apache\lucene\index\TestIndexWriter.java 3.81 : 2460 0.0015487805

java\org\apache\lucene\index\IndexWriter.java 3.43 : 2240 0.0015312501

test\org\apache\lucene\analysis\TestASCIIFoldingFilter.java 2.33 : 1596 0.0014598997

java\org\apache\lucene\analysis\standard\UAX29URLEmailTokenizer.java 3.47 : 3414 0.0010164031

test\org\apache\lucene\analysis\WordBreakTestUnicode_6_0_0.java 1.0 : 1963 5.0942437E-4

test\org\apache\lucene\search\TestMultiPhraseQuery.java 0.0 : 427 0.0

java\org\apache\lucene\analysis\tokenattributes\TermAttributeImpl.java 0.0 : 4 0.0

java\org\apache\lucene\util\Attribute.java 0.0 : 3 0.0

java\org\apache\lucene\queryParser\QueryParserConstants.java 0.0 : 76 0.0

java\org\apache\lucene\document\FieldSelectorResult.java 0.0 : 10 0.0

Table 13: Complexity : NCSS results of complexity and comment length experiments for Lucene 3.2

Class Ratio Value

test\org\apache\lucene\search\TestMultiPhraseQuery.java 0.0 : 0 N/A

java\org\apache\lucene\store\LockStressTest.java 16.0 : 42 0.3809524

java\org\apache\lucene\util\AttributeReflector.java 1.0 : 3 0.33333334

java\org\apache\lucene\messages\NLSException.java 1.0 : 3 0.33333334

java\org\apache\lucene\analysis\NormalizeCharMap.java 6.0 : 22 0.27272728

java\org\apache\lucene\index\TermVectorEntryFreqSortedComparator.java 3.0 : 11 0.27272728

java\org\apache\lucene\index\TermPositionVector.java 1.0 : 4 0.25

java\org\apache\lucene\analysis\CharStream.java 1.0 : 4 0.25

java\org\apache\lucene\document\FieldSelector.java 1.0 : 4 0.25

java\org\apache\lucene\index\InvertedDocEndConsumerPerField.java 1.0 : 4 0.25

 test\org\apache\lucene\search\TestSort.java 1.97 : 680 0.0028970588

test\org\apache\lucene\index\TestIndexReader.java 2.88 : 1161 0.0024806203

test\org\apache\lucene\queryParser\TestQueryParser.java 1.49 : 689 0.0021625545

java\org\apache\lucene\index\IndexWriter.java 3.43 : 1637 0.0020952963

test\org\apache\lucene\index\TestIndexWriter.java 3.81 : 2063 0.001846825

test\org\apache\lucene\analysis\WordBreakTestUnicode_6_0_0.java 1.0 : 982 0.00101833

java\org\apache\lucene\document\FieldSelectorResult.java 0.0 : 2 0.0

java\org\apache\lucene\queryParser\QueryParserConstants.java 0.0 : 40 0.0

java\org\apache\lucene\util\Attribute.java 0.0 : 2 0.0

java\org\apache\lucene\analysis\tokenattributes\TermAttributeImpl.java 0.0 : 2 0.0

Table 10 and Table 11 show the results of the experiment done on Lucene 3.2 of comment-words-to-code-

lines, for LOC and NCSS respectively. The first block of ten classes listed holds the best performing classes,

starting with the very best. Zero source code lines were found in the test run done with NCSS for

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 158

Copyright TIMBUS Consortium 2011 - 2013

TestMultiPhraseQuery because of the JavaNCSS bug mentioned above158. There were also some files listed of

only having one or no comment words although they contained many more annotations. The discrepancy

could be traced back to Java files containing only enum specifications, no class files (cf. Section 4.6.2.1.2 and

footnote 154).

Table 12 and Table 13 contain the results of complexity-to-code-lines, again for both LOC and NCSS

respectively. Here lower numbers are better, thus the first block contains the worst performing classes,

starting with the class with the poorest score. The JavaNCSS bug mentioned above affected the result again.

Classes with a complexity of 0 are short classes or interface declarations without any content.

4.6.2.2 Prototype experiments

For this second part of the experiments different projects were used in order to compare the output of the

plugins on a larger scale. Information on the plugins tested can be found in Section 4.6.1.2.

4.6.2.2.1 Projects

The set of test projects was mainly taken from the Qualitas Corpus (QC) [96], a curated collection of software

systems provided on a website hosted by Ewan Tempero159. In addition three projects were chosen because

their QC version proved to be not buildable or they contained especially interesting artefacts. The most

current version of the QC, 20120401r, was used. From the contained 111 systems especially medium size

and large projects were chosen. An overview of them can be found below in Table 14. For Sonar it is only

possible to run unit tests for Maven projects (containing a Maven build script). We are planning on extending

this functionality to also work with other build scripts, like they are needed for Apache Ant. For the tests

done, however, we distinguish between availability of tests and their executability, which depends on the

project containing a Maven build script or not. The projects were used as is. Provided build scripts for Ant or

Maven and folder structures were used and not altered except for cases where it concerned properties of

particular need for our plugins. Attributes for our implemented plugins were set to useful values, so that the

violations found by the plugins indicated significant problems, i.e. the language detection only gets triggered

for comments with at least 10 words, the language detection uses a spell checker for detection if the

comment is less than 10 words long, excluded categories of text proofing are “possible typos” and

“miscellaneous”, and the text proofing only triggers a violation if the comment-words to errors ratio is higher

than 20. Other attributes helping to sort out insignificant violations, like disregarding Javadoc mark-up, were

turned on.

A more detailed overview of the results of each project can be found later on in distinct sections, including

the comment density; the complexity per method, class, and file; the number of Sonar violations; the

percentage of code complying with the rules; and the unit tests coverage, if available. A short summary of

the project, as well as a comparison with the artefact list (cf. Section 4.2.4), an analysis of the documentation

readability, and an evaluation of our implemented plugins complete each section.

158

 The file contains a for-each loop.
159

 http://qualitascorpus.com/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 159

Copyright TIMBUS Consortium 2011 - 2013

Table 14: Overview of projects

Project Version (source) Size (LOC) Documentation Tests available Tests executable

Azureus/Vuze 4.8.1.2(160) 520,007 No Yes No

Weka 3.7.5 (QC) 233,005 Yes Yes No

Lucene 3.5.0 (QC) 68,622 No Yes No

Megamek 0.35.18 (QC) 242,836 No Yes No

Xalan 2.7.1 (QC) 172,300 Yes No No

JFreeChart 1.0.14(161) 93,460 No Yes Yes

Derby 10.6.1.0 (QC) 371,942 Yes Yes No

JasperReports 3.7.4 (QC) 169,821 No No No

Sonar 3.4 Snapshot(162) 57,744 No Yes Yes

4.6.2.2.1.1 Vuze

Vuze163, previously named Azureus, is a widely used P2P file sharing client for the BitTorrent protocol,

including a media player and other media related extensions. The comparison to our artefact list:

 Intellectual property: GPL information included about the terms and conditions for copy, distribu-

tion and modification of the program.

 Documentation: No explicit documentation, only online available.

 Test environment: Test cases are provided but there is no documentation about them.

 Design environment: Nothing provided.

 Build environment: Ant script (build.xml) provided.

 Applications: Source code provided.

According to our Sonar run, Vuze is one of the largest projects in the QC, although with only 8.2% comments

the comment-code ratio is rather low. About two-thirds of the code complies with the Sonar rules which is

an average result compared to other projects. The number of violations triggered by the license plugin is

exceptionally high (2,714), because without a violation triggered it would not be possible to look at the

results of the plugin for a class.

 Non-standard library: triggered for four libraries out five that could not be found in the Maven re-

pository

 Build: was able to build Vuze with the provided Ant script and produce a distributable jar

 Release: binaries for comparison downloaded from the project’s web site164, which were not identi-

cal to the compilation done by the Sonar run

160

 Downloaded from http://svn.vuze.com/public/client/branches/BRANCH_4812/ on 17.01.2013
161

 Downloaded from http://sourceforge.net/projects/jfreechart/files/1.%20JFreeChart/1.0.14/jfreechart-

1.0.14.zip/download on 24.01.2013
162

 Downloaded master branch from repository https://github.com/SonarSource/sonar/tree/branch-3.4 on 19.03.2013
163

 http://sourceforge.net/projects/azureus/
164

 http://sourceforge.net/projects/azureus/files/vuze/Vuze_4812/Vuze_4812.jar/download, accessed on 13.03.2013

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 160

Copyright TIMBUS Consortium 2011 - 2013

 Unsafe calls: 38 binary calls found, several Runtime and ProcessBuilder calls, some of them in com-

ments

 Language detection: detected 10 violations, most of them containing special mark-up or commented

source code

 Text proof: 42 issues detected, most of them stating that a sentence did not start with an upper let-

ter

 License check (direct output of plugin):
o GPL (with incorrect FSF address): 261 times

o *No copyright* GPL (v2 or later) (with incorrect FSF address): 3 times

o *No copyright* GPL (with incorrect FSF address): 487 times

o UNKNOWN: 2 times

o *No copyright* GPL (v2) (with incorrect FSF address): 2 times

o MIT/X11 (BSD like): 1 time

o GPL (v2 or later) (with incorrect FSF address): 1466 times

o Apache (v2.0): 2 times

o *No copyright* UNKNOWN: 562 times

o *No copyright* GENERATED FILE: 1 time

o GPL (v2) (with incorrect FSF address): 490 times

4.6.2.2.1.2 Weka

Weka, developed by the University of Waikato, offers a collection of machine learning algorithms for data

mining problems.

The comparison to our artefact list:

 Intellectual property: GPL information included about the terms and conditions for copy, distribu-

tion and modification of the program.

 Documentation: a specific documentation for Weka is provided (as pdf in the zip file provided in the

QC); Javadoc of the sources is also included

 Test environment: Test cases and data are provided but there is no documentation about them. JUn-

it is used.

 Design environment: nothing provided

 Build environment: Ant script (build.xml) provided, contains targets for test cases as well

 Applications: Source code provided

According to our Sonar run, Weka’s comment to code ratio, according to [80], is above average. Most of the

Software Escrow violations (991) are triggered by the license plugin, because through the violation it is

possible to get the exact license of each source file. The other most violated rule is magic number.

 Non-standard library: triggered for two libraries out of four, that could not be found in the Maven

repository

 Build: was able to build Weka with the provided Ant script, no runnable jar war generated though

 Release: binaries taken from the QC were used for comparison, which were not identical to the

compilation done with Sonar

 Unsafe calls: three binary calls found, all of them Runtime calls

Comments Complexity (method/class/file) Violations Rules compliance Test coverage

8.2 % 3.0 / 27.4 / 32.8 84,590 67.1 %

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 161

Copyright TIMBUS Consortium 2011 - 2013

 Language detection: no violations

 Text proof: no violations

 License check (direct output of plugin):
o *No copyright* GPL (v2 or later) (with incorrect FSF address): 5 times

o GPL (v2 or later) (with incorrect FSF address) GENERATED FILE: 7 times

o UNKNOWN: 12 times

o GPL (v2 or later) (with incorrect FSF address): 971 times

o Public domain: 1 time

o *No copyright* UNKNOWN: 3 times

o *No copyright* GENERATED FILE: 6 times

4.6.2.2.1.3 Lucene

Apache Lucene165 is an information retrieval software library that powers Twitter’s search function and is

used within Solr166, an open source enterprise search platform. The comparison to our artefact list:

 Intellectual property: An Apache License is contained, stating terms and conditions for use, repro-

duction, and distribution.

 Documentation: no specific documentation; although stated in the readme, no Javadoc can be found

or is generated during the build process

 Test environment: Test cases and a test framework are provided but there is no explicit documenta-

tion provided.

 Design environment: nothing provided

 Build environment: Ant script (build.xml) provided, contains targets for test cases as well

 Applications: Source code provided

According to our Sonar run, Lucene’s comment density is well above the average of 18.67% measured in

[80]. As before most of the Software Escrow related violations are triggered by the licenses plugin due to its

functionality.

 Non-standard library: not triggered (four libraries to check)

 Build: was able to build Lucene with the provided Ant script, runnable jar generated as well

 Release: binaries taken from the QC were used for comparison, which were not identical to the

compilation done with Sonar

 Unsafe calls: none found

 Language detection: one violation (a class containing information on character encoding with special

characters in the comments)

 Text proof: none

 License check (direct output of plugin):
o Apache (v2.0) GENERATED FILE: 7 times

o Apache (v2.0): 487 times

o *No copyright* GENERATED FILE: 7 times

165

 http://lucene.apache.org/core/
166

 http://lucene.apache.org/solr/

Comments Complexity (method/class/file) Violations Rules compliance Test coverage

28.5 % 3.3 / 38.1 / 51.3 43,356 53.9%

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 162

Copyright TIMBUS Consortium 2011 - 2013

4.6.2.2.1.4 Megamek

Megamek 167 is a network based Java implementation of BattleTech, a turn-based board game for multiple

players.

The comparison to our artefact list:

 Intellectual property: GPL information included about the terms and conditions for copy, distribu-

tion and modification of the program as well as a copyright notice in the readme file.

 Documentation: no development documentation, only documentation related to the game itself

 Test environment: Test cases are provided but there is no explicit documentation on how to run

them.

 Design environment: nothing provided

 Build environment: Ant script (build.xml) provided, contains no explicit targets for test cases

 Applications: Source code provided, data (maps) for the game included

Megamek’s complexity compared to other projects is slightly higher, although still below the propagated

threshold of 10 when it comes to methods. The rules compliance is quite high. A lot of escrow specific

violations belong to the license plugin (1,627), which are triggered due to its functionality.

 Non-standard library: none of the 7 libraries was found in the Maven repository

 Build: was unable to build the program because of an error in the compilation

 Release: could not be compared because build did not succeed

 Unsafe calls: none found

 Language detection: no violations

 Text proof: 161 violations, mostly because sentences did not start with an uppercase letter

 License check (direct output of plugin):
o GPL (v2 or later) GENERATED FILE: 2 times

o GPL (v2 or later): 1621 times

o GPL (v2 or later) (with incorrect FSF address): 3 times

o *No copyright* UNKNOWN: 30 times

4.6.2.2.1.5 Xalan

Xalan 168 is a XSLT processor for transforming XML documents into HTML, text, or other XML document

types.

The comparison to our artefact list:

167

 http://megamek.info/
168

 http://xml.apache.org/xalan-j/

Comments Complexity (method/class/file) Violations Rules compliance Test coverage

30.5 % 3.1 / 21.8 / 34.6 11,012 70.3%

Comments Complexity (method/class/file) Violations Rules compliance Test coverage

14.7 % 4.7 / 30.9 / 34.2 49,440 71.1%

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 163

Copyright TIMBUS Consortium 2011 - 2013

 Intellectual property: There is an Apache License included.

 Documentation: no development documentation, only documentation related to the tool itself (in

xml files)

 Test environment: Test cases are provided but there is no explicit documentation on how to run

them.

 Design environment: nothing provided

 Build environment: Ant script (build.xml) provided

 Applications: Source code provided

Xalan’s comment ratio is above average of the projects in this experiment. Most of the escrow related

violations are cause by the used licenses plugin due to its functionality (933).

 Non-standard library: triggered for two unknown libraries out of five

 Build: was able to build the program with the submitted ant script and produce a distributable jar

 Release: binaries taken from the QC were used for comparison, which were not identical to the

compilation done with Sonar

 Unsafe calls: none found

 Language detection: no violation

 Text proof: 170 violations, all in one file; again, mostly because a sentence did not start with an up-

percase letter

 License check (direct output of plugin):
o Apache (v2.0) GENERATED FILE: 5 times

o UNKNOWN: 1 time

o Apache (v2.0): 925 times

o *No copyright* GENERATED FILE: 2 times

4.6.2.2.1.6 JFreeChart

JFreeChart provides a chart library, including charts like bar chart, pie chart, scatter plots, histograms, and

others. It comes shipped with a Maven build file, thus the test coverage can be generated.

The comparison to our artefact list:

 Intellectual property: LGPL information included about the terms and conditions for copy, distribu-

tion and modification of the program.

 Documentation: The readme contains a reference to the online available installation instructions

and a notice where the developer guide can be purchased.

 Test environment: JUnit tests are provided and can be run with the included Maven build file.

 Design environment: nothing provided

 Build environment: Maven build file (pom.xml) and Ant script (build.xml) provided, both contain tar-

gets for test cases

 Applications: Source code provided

Comments Complexity (method/class/file) Violations Rules compliance Test coverage

31.4 % 3.3 / 28.8 / 34.1 25,308 69.2%

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 164

Copyright TIMBUS Consortium 2011 - 2013

The rule compliance is exceptionally high, with almost 90%. Again, the license plugin triggers most of the

escrow related violations (595). Six non-standard libraries related violations and one violation from the

invalid release plugin are also found. The most violated rule coming shipped with Sonar is the magic number

rule (2,605 violations).

 Non-standard library: six of the nine libraries were not found in the Maven repository

 Build: building was successful, runnable jar created

 Release: binaries taken from the QC were used for comparison, which were not identical to the

compilation done with Sonar

 Unsafe calls: none found

 Language detection: no violations

 Text proof: no violations

 License check (direct output of plugin):
o LGPL (v2.1 or later): 593 times

o LGPL (v2.1 or later) GENERATED FILE: 1 time

4.6.2.2.1.7 Derby

Apache Derby169 is an open source relational database implemented in Java. The comparison to our artefact

list:

 Intellectual property: An Apache License is contained, stating terms and conditions for use, repro-

duction, and distribution.

 Documentation: The QC version did not contain a documentation folder, but when downloading

from the website there is a substantial HTML and PDF documentation included.

 Test environment: Tests are provided and a comprehensive documentation on testing issues is in-

cluded.

 Design environment: nothing provided

 Build environment: Ant script (build.xml) provided

 Applications: Source code provided, although in several subfolders

Comment density is good, whereas the complexity is higher on average than in other tested projects. Most

remarkably again is the number of violations triggered by the license plugin (1,729). Almost one quarter of

all violations are magic numbers, which is again the most violated rule.

 Non-standard library: four non-standard libraries were not found in the Maven repository out of six

in total

 Build: building was successful

 Release: binaries taken from the QC were used for comparison, which were not identical to the

compilation done with Sonar

 Unsafe calls: none found

169

 http://db.apache.org/derby/

Comments Complexity (method/class/file) Violations Rules compliance Test coverage

33.1 % 2.8 / 38.1 / 39.5 6,830 89.6 % 53.6 %

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 165

Copyright TIMBUS Consortium 2011 - 2013

 Language detection: one violations in JavaCC generated file that did not include many comments

 Text proof: no violation triggered

 License check (direct output of plugin):
o Apache (v2.0) GENERATED FILE: 16 times

o *No copyright* Apache (v2.0): 3 times

o *No copyright* UNKNOWN: 15 times

o Apache (v2.0): 1699 times

o *No copyright* GENERATED FILE: 10 times

4.6.2.2.1.8 JasperReports Library

JasperReports Library is a popular open source reporting engine, used to process data coming from different

sources and producing pixel-perfect documents that can be viewed, printed or exported in various document

formats like HTML, PDF, or OpenOffice.

The comparison to our artefact list:

 Intellectual property: GPL information included about the terms and conditions for copy, distribu-

tion and modification of the program.

 Documentation: a specific documentation is not included; there is data for demos and sample files

 Test environment: nothing provided

 Design environment: nothing provided

 Build environment: Ant script (build.xml) provided, Maven build script (pom.xml) provided

 Applications: Source code provided

Compared to other projects the number of comments in the source code is rather low. However, the

complexity measurement and the rule compliance, which is one of the highest in the experiments, indicate

that the source code was written to be understandable. Again, most of the escrow related violations were

triggered by the license plugin (1411).

 Non-standard library: triggered for 22 libraries out of 48 that could not be found in the Maven re-

pository

 Build: building the project worked, however generating jar files from the build was impossible due to

an internal error by the application

 Release: runnable jars were not created so the comparison was not possible

 Unsafe calls: one binary call found (a Script expression gets executed in a method, which triggers the

regex search for “exec”)

 Language detection: no violations

 Text proof: 24 issues detected, most of them triggered because an alleged sentence did not start

with an upper letter

 License check (direct output of plugin):
o UNKNOWN: 3 times

o LGPL (v3 or later): 1408 times

o LGPL (v3 or later) GENERATED FILE: 1 time

o LGPL (v2.1 or later) (with incorrect FSF address): 1 time

Comments Complexity (method/class/file) Violations Rules compliance Test coverage

30.2 % 3.4 / 49.3 / 51.3 66,537 68.1 % -

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 166

Copyright TIMBUS Consortium 2011 - 2013

4.6.2.2.1.9 Sonar

Sonar is the open source tool used for the analysis of the project. Freely adapting Sonar’s “eat your own

food”170 policy, we built and analysed the 3.4 branch from Git, because we used version 3.4.1 for our test

runs.

The comparison to our artefact list:

 Intellectual property: GPL information included about the terms and conditions for copy, distribu-

tion and modification of the program as well as a copyright notice.

 Documentation: no documentation included; the Javadoc can be found on the website

 Test environment: tests are included in the modules

 Design environment: nothing provided

 Build environment: Maven build script (pom.xml) provided

 Applications: Source code provided

A Sonar analysis of itself can be found on the website171, which states only 233 violations and 98.8% rule

compliance. In our runs this excellent result can almost be reproduced, but because our runs were done with

our self-implemented plugins additional violations were found. Most of them (1,123) are triggered by the

license plugin again. Besides this, only 36 issues in the comment text and one binary call was found.

 Non-standard library: Interestingly, Sonar does not contain any jar library we could test.

 Build: Building the project worked, for each module a separate jar file was created

 Release: no runnable jars for a comparison were created; for the generated jar files we only found

one match in the file downloadable from the website172 (sonar-applicaton-3.4.1.jar). After the run

the name of the generated jar indicated that we built a snapshot of version 3.4.2. The comparison al-

so showed that the files were not identical.

 Unsafe calls: one found (a ProcessBuilder expression)

 Language detection: no violations

 Text proof: 36 found, most of them triggered because a sentence did not start with an uppercase

letter

 License check: Sonar consists of multiple modules and only provides license check results for each

single module. The number of licenses in total, counted manually (direct output of plugin):
o LGPL (v3 or later): 1176 times

o LGPL (v3 or later) GENERATED FILE: 1 time

170

 http://www.sonarsource.org/forge/
171

 http://nemo.sonarsource.org/dashboard/index/org.codehaus.sonar:sonar, accessed on 31.01.2013
172

 http://dist.sonar.codehaus.org/sonar-3.4.1.zip

Comments Complexity (method/class/file) Violations Rules compliance Test coverage

11.5 % 2.0 / 17.9 / 21.3 12,283 89.6%

Comments Complexity (method/class/file) Violations Rules compliance Test coverage

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 167

Copyright TIMBUS Consortium 2011 - 2013

4.6.2.3 Discussion and interpretation of results

This section is split in two parts, according to the previous section containing the experiments and their

results. First we will present the results from the experiments done without our Prototype Software Escrow

Framework and afterwards we will compare the outcome of the analysis of different projects.

4.6.2.3.1 Feasibility experiments

Code obfuscation promised to be an interesting method of hiding knowledge in source code by making it

difficult to understand. Unfortunately the obfuscation method of the used tool was working too well. Thus

we were not able to fully decompile the obfuscated sources again.

The readability of comments experiments were conducted for the Flesch index as well as for the Flesch-

Kincaid grade level. The comments were used as is, including annotations (e.g. for Javadoc or html tags) that

make the raw comments less human readable. The normalization on number of comment words is

questionable because both metrics already include the average sentence length. Therefore, calculating

Flesch or Flesch-Kincaid for comments alone, without normalization, will be enough to evaluate their

understandability. Classes with outstanding poor performance regarding their comments will then have to

be checked by the human reviewer to decide if they are actually badly written or for instance only contain

sentences that metrics falsely interpret to be of bad quality. Examining all comments of Lucene together, the

Flesch(-Kincaid) values indicate that a sophisticated user is needed to understand them. This result also

includes classes with annotated comment text (e.g. for Javadoc), which decreased the readability values.

Regarding the experiments done with ratios of comment words or complexity to code lines the most

interesting results were found when using different code lines calculations. The number of code lines found

by LOC and NCSS differ unproportionally, e.g. TestTermVectorsWriter.java has 384 LOC and 315 NCSS,

whereas Version.java has 24 LOC and only 4 NCSS. Thus the set of classes found is also not very similar:

Leaving out the erroneous classes with zero source code lines, only four of seven classes are in both

comments-words:code-lines result sets containing the poor performing classes. The result set of the best

classes are overall the same, however they are not as interesting for our purpose. The complexity:code-lines

result sets show the same problems. It is necessary to agree on one method for counting lines before

evaluation.

For both LOC and NCSS result sets, many of the best performing classes contain less than 10 code lines. We

argue that, compared to huge classes, only a few code lines in small classes do not cause understanding

problems. By using a threshold, small or erroneously found classes can be sorted out from the evaluation

process.

4.6.2.3.2 Prototype experiments

For the Software Escrow Prototype experiments, different open source projects were used, starting from

about 60,000 to 520,000 LOC. A comparison to our artefact list shows that the range of maintainability

related artefacts is rather low. This applies on one hand to the usage of free available software with no

agreement on the submitted artefacts, as would be usual in a customer-furnished software agreement, and

8.5 % 1.8 / 9.6 / 10.5 1,890 97.1% 70.0%

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 168

Copyright TIMBUS Consortium 2011 - 2013

on the other hand we assume that their developers do not have a lot of resources for costly maintainability

tasks.

All of the projects under test contained information on the license used, usually in a file in the top level

directory. Still, as our license plugin showed, some classes within the project did contain unknown license

information or no copyright at all. Two-thirds of the projects provided a documentation, which was not

tested due to the diversity in format and the limit of Sonar’s plugins. It is interesting to note that one project,

JFreeChart, only provided a paid-for developer guide. Tests were available for almost all projects, although

Sonar was only able to evaluate the test cases of the two Maven projects. We plan on implementing a plugin

to analyse JUnit tests of other software as well. If test cases were available, a corresponding target in the

build script was also provided. Regarding design environment no project included anything related to this

artefact. It is probable that the developers working on the source code do not have a dedicated design

document due to lack of resources. For building the projects, Ant scripts are the most typical information

provided. The build artefacts are lacking the compiler used for build, which leads to problems when it comes

to comparing the built results with the release results (see below). Regarding the application’s artefacts all

projects provided their source code. Only Megamek needs to have maps for the game additionally to the

source code for full functionality, which were also included.

Analysing commonly used quality metrics is not in the focus of this work. Nevertheless we will give an

overview of these results as well to show that they are not significant enough for the Software Escrow use

case.

Commonly used quality metrics, including comment density, complexity on different levels, Unit test

coverage, as well as violations to rules or rule compliances found by Sonar offer a comparison between

projects. The range of how many comments are included in a project differs widely, not depending on the

project size. Projects with more LOC, like Azureus or Megamek, have a rather low comment density,

compared to Derby that includes many more comments. Sonar on the other hand is the smallest project

tested and has a comment density under 10%. The density of all projects is 21.8% on average. These findings

reflect the results of [80], where an average comment density of 25.87% was found for Java open source

projects. Looking only at the quantity of comments, quality is hard to evaluate as the percentage does not

reflect the content of the comments. If the framework does not take into account license information in

comments at the beginning of a class, then long license headers will increase the comment density. Because

Sonar only measures the number of comment lines, a fixed number of characters per line has to be used in

order to compare the number of comment lines across projects. One way to come by this problem is to

agree on a comment line length in the escrow contract. Another approach could include formatting the

source code to a pre-defined format before analysis. As formatting source code is a common feature in

development environments to automatically convert the source code to a desired style, this step can quickly

be done.

Regarding complexity, the source code quality can be measured more easily. More complexity means more

effort for understanding. Sonar calculates complexity on different levels. For methods, this lies below

complexity of five on average, but looking at class complexity the projects diverge much more. For instance

the average method complexity in Azureus is higher than for JFreeChart, but when it comes to classes the

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 169

Copyright TIMBUS Consortium 2011 - 2013

second project gets more complex. Complexity on file level is usually higher than on class level, which leads

to the assumption, that when using more than one class per file the code gets more difficult to understand.

Compared to McCabe’s stated upper limit of ten (cf. Section 4.5.1) for complexity, all projects, or at least

their methods, lie below this on average. Because there is no reliable limit as to when a source code

definitely gets too complex to understand, this metric can only be used to give a rough overview of source

code quality.

The number of violations reflects how often coding best practices are disregarded. The rule compliance

supports this number by normalizing it to the size of the source code. When our text proofing plugin was

turned on without setting its attributes to reasonable numbers, the violations increased enormously. Thus

when implementing plugins, we have to make sure that the number of violations found does not exceed a

certain limit. Otherwise the results get confusing. Following this recommendation, the rule compliance is

able to show whether the programmer adhered to common coding practices and where improvement is

needed the most.

The test coverage for JFreeChart is lower than for Sonar, probably because the former contains more LOC

and writing tests is expensive. As mentioned in Section 4.5.1, the impact of code coverage is controversial173.

Besides, we only have a sample of two, which is not significant enough for a conclusion.

Our plugins were tailored for analysing software put into escrow with regard to maintainability after their re-

deployment. Other than the abovementioned standard quality metrics, these help in finding artefacts that

need further attendance by a human reviewer.

The non-standard library plugin worked as expected. It found libraries that were not listed in the Maven

repository. We were not able to test the National Software Reference Library because the projects tested did

not use them. A functionality check of the plugin, if the repository actually does not know the library, turned

out to find the library, although only when searching for its name. However, on a binary level the two files

differed. We assume that in open source projects programmers do not want to hide code on purpose in

libraries. A possible explanation for these incidences can be that the (also open source) libraries were

compiled before deployment and thus differ slightly from the ones available in the Maven repository. For

our purpose this behaviour is desirable however. Altered libraries have to be found, even if their names are

the same. On the other hand, there are libraries that do not need further attendance, because they are not

different to the ones stored in the Maven repository. This reduces the time for the review.

The build plugin was able to compile most of the projects. In some cases no runnable jar was created. All of

the build errors could be repeated when doing the compilation without Sonar. Thus our plugin worked

accurate.

The release plugin directly depends on the build plugin, as it compares any release binary to the output of

the compilation. Although preliminary tests indicated that a compilation with different machines and the

same compiler should lead to identical libraries, we were not able to reproduce this result in the prototype

experiments. We compared the compiled binaries to the jar files provided in the QC when using the sources

173

 Testivus wisdom on code coverage can be found here: http://googletesting.blogspot.co.at/2010/07/code-coverage-

goal-80-and-no-less.html

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 170

Copyright TIMBUS Consortium 2011 - 2013

from there as well, and to binaries downloadable from the internet. Even if the jar files’ sizes were the same,

as it happened in the Derby experiment, the checksum of the files were not equal. We checked the results

more thoroughly and came to the conclusion that a different compiler was used than in our system setup. As

the class files did not differ in the header section, which would suggest that they were compiled by different

compiler versions, it is possible that e.g. an open source implementation of the Java Platform like OpenJDK174

was used. This indicates the importance of knowing which compiler was used for the development.

The unsafe calls plugin listed classes that contained runtime or similar calls. Even if it triggers wrongly, it can

save a reviewer a lot of time because with Sonar it is quickly possible to inspect the source of the violation

and mark it as false positive.

The language detection plugin was set to analyse the comments on class level. With the additional

dictionary based approach turned on, the quality of the results could be increased.

Text proofing was done for each project with a third party tool, embedded in a Sonar plugin. However it

quickly turned out that without thresholds, it increases the number of violations found tremendously. Thus

we decided to implement different attributes that e.g. sorted out Javadoc, ignored the file header

(containing license information), or added only classes with a higher error count to the result set. The most

frequently found errors were sentences not starting with an upper case letter, a writing style rather common

in comments. We would have to exclude the entire capitalization category to filter out this error. Because

upper case letters are important for readability, we decided to leave these findings in the result set.

The license check plugin was able to extract the licenses used in the source files, as well as find classes that

did not contain a license and/or were generated. Thus it happens that classes with a name consisting of

“generate” get accidentally labelled as being generated. Because classes with no known copyright notice are

rare in our test set, it is still feasible to manually look them through and use the plugin only as an indicator.

Regarding the licenses of libraries, in many cases these could not be identified, because no license

information was provided. Our plugin had a minor bug which caused problems to view which license a library

uses. Because it could not be fixed in time we left out the information on the library’s licenses.

4.7 Conclusion and outlook

The previous section analysed details necessary for a successful Software Escrow. We examined legal and

technical considerations related to the entire process. The three phases of escrow were discussed and

analysed from both points of view, beginning with planning and setting up an agreement, executing the

escrow by depositing the material at the escrow agent and evaluating it, and finally redeploying the

software.

The planning phase greatly involves legal and economic aspects. A cost-benefit analysis helps to evaluate if

the software is crucial for the execution of a business process and therefore needs to be preserved.

Requirements for selecting the right escrow agent and the data security requirements needed are part of

this phase as well. The contents of the material to be deposited in order to guarantee the maintainability

174

 http://openjdk.java.net/

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 171

Copyright TIMBUS Consortium 2011 - 2013

also have to be agreed on in this phase. Part of this also involves the clarification of licenses and rights to the

deposited artefacts.

The deposit procedure of the escrowed material was described in the execution phase. From a legal point of

view the thresholds for quality turned out to be crucial. If verifying the deposited software, it is important to

agree upon a level of quality that has to be fulfilled. Extending existing verification procedures, which were

described shortly, we proposed a framework. Thus a great part in the execution phase involves the

verification of the deposited material. The quality of the escrowed artefacts has to be verified in order to

guarantee their full redeployability once they get used again. To support this quality verification part a

framework was proposed, based on our investigation of the related work. This Technical Framework for

Software Escrow is able to automatically check all deposited artefacts related to the software in escrow. The

quality evaluation focuses mainly on maintainability to guarantee that the software can be developed once it

gets redeployed. For a technical expert reviewing the software, the framework is able to support his work by

pre-screening the material and reporting artefacts that need further investigation. The goal is to decrease

the time a costly human reviewer takes to evaluate hundreds of source files and other artefacts. For better

extensibility the framework was designed to include plugins for different calculations. These include

commonly used quality metrics like the number of code lines in a source code or its complexity. Other

plugins specific for Software Escrow were also proposed, including checks for external dependencies like

Web service calls or for functionality hiding.

The last phase of Software Escrow, the redeployment, involves only legal aspects again. The release of the

escrowed materials is the main part. We covered different events that trigger the release of the software,

including bankruptcy of the developer, unjustified refusal of maintenance, or unjustified denial of adaption.

How to advance in such cases was also described in detail. Different information obligations by the software

user and escrow agent concerning the trigger events were mentioned.

To evaluate the usage of the theoretical basis for the Technical Framework for Software Escrow, a prototype

was implemented and tested with different projects. For each project, completeness of artefacts and escrow

specific quality of the artefacts were evaluated. The results showed that many projects were not built to take

into account short or long term preservation. For our experiments this helped testing all plugins, however.

Although being open source, not all of the projects provided a proper documentation needed for

understanding and developing the source code. Documentation in natural language, that explains how the

software is constructed, is the most essential artefact for comprehension. When setting up an escrow

contract, the scope of documentation has to be clearly stated. As our results show it is not enough to agree

on a quantitative attribute, e.g. the comment density in the source code. The quality and therefore the

content of the annotations have to be evaluated. To support this check we worked on a readability tool.

Analysing the results indicated that pre-processing the text before analysis, e.g. stripping special mark-ups

from the comments, will improve the reliability of the calculations. Complexity of source code or other

metrics could also not be identified as reliable indicators for quality in deposited material. Plugins looking for

Software Escrow specific problems like hidden code in libraries or calls to external services were able to

highlight potential troublesome artefacts and point them out appropriately, e.g. by explaining what kind of

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 172

Copyright TIMBUS Consortium 2011 - 2013

call triggered the violation and where exactly to find it. The license check was also successful on file and

library level. We were able to identify classes without a proper license and check the licenses of libraries.

These finding can be compared to the licenses agreed on in the contract and objected to when necessary.

The Technical Framework for Software Escrow was intended to support the software review by pointing out

artefacts and parts of artefacts that needed further investigation. With the theoretical basis provided in this

deliverable and the implementation of the prototype we were able to give a proof of concept of such a

framework. For future work in the readability domain we plan on evaluating if standard readability metrics

need to be adapted to be more suitable for special linguistic features found in source code comments. We

are also planning on making the readability tool part of the prototype framework to fulfil the holistic

approach. Looking for a formula to combine plugin results in order to represent the deposit-quality of all

artefacts will also be part of our future work.

To improve the framework in future work, we propose to address the following goals:

 develop improved metrics

 integration of a high level quality concept to

o increase the degree of automation in the assessment

o keep the understanding of quality more stable over time

o improve the degree of integration between the software development processes and the

Software Escrow

For future work in the readability domain, the evaluation should be forced, if standard readability metrics

need to be adapted to be more suitable for special linguistic features found in source code comments and

other collaterals needed for redeploying a software development process. The prototype framework can

then be extended with the newly realized readability tool.

The developed and implemented metrics are already a useful basis for the assessment of the product’s

insights by an expert. With the implementation of a high level quality concept, the contractual basis is

expected to be more robust and the effort for the quality verification will be reduced by a higher degree of

automation. The idea of the quality concept will be illustrated in the following, to give a more concrete

impression of the planned improvements.

As described above, with the implemented framework every result needs to be interpreted by an expert. In

the concept suggested for the future, quality will be defined in an early stage of the project. The implicit

understanding of maintenance quality used in the current framework could be made more objective by the

usage of a well-defined quality model. The benefit of an objective quality model is, that it can be part of the

software escrow contract and that it can be interweaved with the quality models already used in the devel-

opment projects. Quality models are structured in a hierarchy, refining the quality concepts from the general

term quality to the fine granular leaves named quality attributes. The quality attributes in the level n will be

refined in the tree level n+1. The quality in the level n will be aggregated by the weighted quality of the root

of its sub tree.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 173

Copyright TIMBUS Consortium 2011 - 2013

With the resulting homogenous understanding of quality in a project, a consistent basis for balancing inter-

ests of the different stakeholders is defined. These stakeholders can be interested in the Software Escrow as

well as in the original development project. It is obvious that a consistent taxonomy for quality will improve

the integration of Software Escrow in the development. The applicability of quality models like the ISO 9126

[97] is proven in different development processes like the V-Model 97.

In the meantime, the ISO 9126 was replaced by its successor the ISO25010 [98]. The ISO 25010 defines two

quality models. The quality model for quality in use and one quality model for the product quality. For the

Software Escrow framework the product quality model is expected to fit perfect. The structure of the prod-

uct quality model is illustrated in Figure 37 and a detailed description of the quality attributes can be found

in the ISO 25010.

Figure 37: ISO 25010 Product Quality Model

Besides the fact, of the simpler integration of the Software Escrow it is expected that the escrow goal can be

defined much easier and more flexible. The quality characteristics (or attributes) will be weighted depending

on the escrow goal. For example a Software Escrow addressing the goal to only rerun the software (e.g. for

forensic analysis) may be mainly interested in compatibility. Another potential escrow goal may be the reuse

of the software. In this case, functional suitability and usability may be the characteristics of interest. But in

the most probable case, maintainability (like it is addressed by the current framework) is the quality charac-

teristic of interest.

Even if quality models are helpful in defining a common understanding of the term quality, they don’t solve

the problem that the application of the quality model on a project is still subjectively in its quantitative

System/Software Product
Quality

Functional Suitability

Performance efficiency

Compatibility

Usability

Reliability

Security

Portability

Maintainability

Functional
completeness

Functional correctness

Functional
appropriateness

Time-behaviour

Resource Utilisation

Capacity

Co-Existence

Interoperability

Appropriateness

recognisability

learnability

Operability

User error protection

User interface
aesthetics

Accessibility

Maturity

Availability

Fault tolerance

Recoverability

Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Modularity

Reusability

Analysability

Modifiability

Testability

Adaptability

Installability

Replaceability

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 174

Copyright TIMBUS Consortium 2011 - 2013

shaping. A well-established practice for improving the objectivity and reducing the manual effort is the usage

of bi-directional quality models. They combine metrics, collected by tools like they are described earlier in

this work, with the quality models like the product quality model from ISO 25010. The glue between the

relatively volatile metrics and the stable quality model are called quality indicators. They map a set of

metrics to a concrete quality attribute and give them a concrete meaning. The schematic concept is

illustrated in Figure 38.

The quality models are maintained and adjusted during the complete systems lifetime. That’s caused by the

changes in the metrics, changes in the measuring tools and by growing experience. Changing quality goals

also influence the quality model and drive changes of the quality models. For example if Software Escrow has

to be contracted for an existing project, the quality model changes or extends its quality focus.

In summary, the combination of often changing metrics with stable quality models will lead to a more

systematic and consistent assessment of quality for the long term.

Figure 38: Schematic bi-directional quality model

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 175

Copyright TIMBUS Consortium 2011 - 2013

5 Conclusion and outlook

The goal of TIMBUS is the preservation of business processes for the long term. This deliverable presents the

TIMBUS process framework that species the process steps to digitally preserve business processes

(presented in Section 3). A special problem for the preservation of processes is posed by the use of external

services. Section 4 presents a novel approach to address the preservation of external dependencies by using

Software Agreement.

The TIMBUS process framework guides through the three phases of the TIMBUS approach: plan, preserve

and redeploy. Driven by an enterprise risk management perspective, Digital Preservation is considered as

mitigation strategy to address potential loss of information over time. Thus potential risks associated with

business processes are identified and approached. The TIMBUS project provides methods, guidelines and

tools to document, acquire, preserve, and later redeploy processes. To preserve the process for the future,

its influence factors and implementation need to be understood. Hence the context of the process is

acquired addressing the business, application, and technology layer. Relevant aspects of the process are

identified that need to be maintained for the future. Potential preservation strategies are identified and

tested considering the specific conditions, requirements, and goals of a setting. Different approaches can be

combined to maintain the significant properties of the process over time. Business processes are often

implemented by using a service-oriented architecture implemented on a distributed infrastructure. The

deliverable discusses preservation approaches that address the specific needs of process preservation such

as the preservation of external services. Escrow agreements for example provide a business model to ensure

access and usage of third party services over time. Driven by the risk management perspective, our

framework allows for potential solutions to be evaluated for their abilities to treat identified risks.

Furthermore, economic aspects are taken into account. The execution phase performs required preservation

actions and prepares the process for archival storage. The redeployment reruns the archived process in a

new environment in some time in the future. The process needs to be adapted according to the conditions

of the new environment, which affects technical as well as organisational aspects. The behaviour of the

redeployed process needs to be validated by comparing its measurements with the measurements taken

from the original process.

The TIMBUS process framework provides a guideline specifying the required steps to plan and perform the

preservation and the later redeployment. The framework provides high degree of flexibility and

customizability for applying it in different domains and settings. It specifies the fundamental concepts of the

process steps by specifying the input and the resulting output of each phase. Thus the implementation of the

process steps can be realised for the specific needs of the setting. The framework should allow an

organisation to implement the preservation process according to their special requirements, while still

ensuring that all relevant aspects of the preservation process are addressed. The organisational

implementation of the framework is guided through a generic stakeholder specification and assignment in

the framework.

The process framework is used for the TIMBUS use cases, WP8 – “Civil Engineering” and WP9 – “eHealth”.

This deliverable shows examples of the use cases for the instantiation of the process steps. Through the

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 176

Copyright TIMBUS Consortium 2011 - 2013

flexibility of the framework both processes can be supported without any bigger adjustment, even though

the two use cases present different scenarios with different focuses, goals, and implementations. The work

on use cases is continued in WP8 and 9, which follow the process framework of this deliverable.

Within this deliverable the modules of the TIMBUS architecture that support the process step are identified.

These tools help to reduce the effort for the preservation process steps. Examples for tools in development

are extraction and population tools for the context model (e.g. installed software on system) or

recommender services for potential virtualisation and emulation strategies. Further existing tools, e.g.

virtualisation tools supporting the preservation process, are identified and tested within WP6 and the use

cases. Additional work is done on a framework to validate and verify the behaviour and characteristics of

redeployed processes within TIMBUS. The results will be presented in the upcoming deliverable D4.7

Validation of Digitally Persevered Business Processes & Verification of Exhumed Business Processes.

The second part of this deliverable aimed at analysing details necessary for a successful Software Escrow. For

this purpose we examined legal and technical considerations. We also looked into the three different phases

of Software Escrow, beginning with planning and setting up an agreement, depositing the escrow material

and evaluating its quality with regards to Digital Preservation, and finally redeploying the software.

From a legal point of view, the planning and redeployment phases are the most important. Careful drafting

of the contract in terms of the circumstances is needed for a successful escrow agreement that becomes

effective under certain trigger events. This starts with specific requirements that need to be taken into

account when selecting the escrow agent. What material to put into escrow has to be agreed upon as well,

because if something is missing after the redeployment, then the software will become unmaintainable.

Furthermore, possible release events and how to proceed when releasing the software from escrow were

discussed, including information obligations by the involved parties.

The deposit procedure in the execution phase involves a greater technical part, i.e. the verification of the

deposited material. Thresholds, stipulated in the contract, are needed to make it possible to agree on a

certain level of software quality. For supporting the quality verification part in the execution phase we

proposed a Technical Framework for Software Escrow to highlight artefacts that do not comply with the

desired quality level. The theoretical basis for this purpose included how to evaluate the deposited software

to guarantee that its quality supports maintainability needed to develop and maintain it in the future. To

support these considerations we implemented a prototype including the previously stated evaluation

mechanisms. Tests were conducted to verify the functionality and feasibility of the prototype. With these

results we were able to give a proof of concept regarding our framework.

Our next steps include the application on larger software with more relation to real-world scenarios. We will

evaluate the use cases presented in WP 8 and 9 (civil engineering and eHealth, respectively) with our

framework. If we can show where problems occur if the software was put in escrow, we will be able to

contribute to its overall preservability evaluation.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 177

Copyright TIMBUS Consortium 2011 - 2013

References

[1] TIMBUS consortium, D8.1: "Use Case Definition and Digital Preservation Requirements", 2012.

[2] TIMBUS consortium, D9.1: "Use Case Definition and Digital Preservation Requirements", 2012.

[3] ISO/IEC, “ISO 14721:2012 - Space data and information transfer systems - Open archival information

system (OAIS) - Reference model,” 2003.

[4] ISO/IEC, ISO 31000:2009 - Risk management-principles and implementation of risk management, 2009.

[5] IEEE Computer Society, “IEEE Standards 1012-IEEE Standard for Software,” IEEE, New York, 2005.

[6] TIMBUS consortium, D5.5: "Refined Preservation Architecture", 2012.

[7] Business Process Model and Notation (BPMN), http://www.omg.org/spec/BPMN/2.0/, accessed

14.03.2013.

[8] The Open Group, “ArchiMate® 1.0 Specification,” 2009.

[9] TIMBUS consortium, D4.9: Refined Business Process Contexts.

[10] TIMBUS consortium, D4.2: "Dependency Models Iter. 1", 2012.

[11] TIMBUS consortium, D4.5: "Business Process Contexts", 2012.

[12] S. Higgins, “The DCC Curation Lifecycle Model,” The International Journal of Digital Curation, vol. 3, pp.

134-140, 2008.

[13] H. Brocks, A. Kranstedt, G. Jaschke and M. Hemmje, “Smart Information and Knowledge

Management,” Studies in Computational Inteligence, pp. 197-226, 2010.

[14] E. Conway, B. Matthews, D. Giaretta, S. Lambert and M. Wilson, “Managing Risks in the Preservation of

Research Data with Preservation,” The International Journal of Digital Curation, vol. 7, pp. 3-15, 2012.

[15] D. Marcum, “The preservation of digital information,” The Journal of Academic Librarianship, vol. 22,

pp. 451-454, 1996.

[16] The SCAPE Project, Identification and selection of large-scale migration tools and services (D10.1),

http://www.scape-project.eu/wp-content/uploads/2011/09/SCAPE_D10.1_KEEPS_V1.0.pdf, accessed

27.02.2013.

[17] S. Granger, Emulation as a Digital Preservation Strategy,

http://www.dlib.org/dlib/october00/granger/10granger.html, accessed 27.02.2013.

[18] J. van der Hoeven, B. Lohman and R. Verdegem, “Emulation for Digital Preservation in Practice: The

Results,” The International Journal of Digital Curation, vol. 2, pp. 123-132, 2008.

[19] J. Rothenberg, Avoiding Technological Quicksand: Finding a Viable Technical Foundation for Digital

Preservation, http://www.clir.org/pubs/reports/rothenberg/contents.html, accessed 27.02.2013.

[20] H. K. Christoph Becker and A. Rauber, “Trustworthy Preservation Planning with Plato,” ERCIM News,

vol. 80, pp. 24-25, 2010.

[21] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska, S. M. Miles, M. Paolo, P. B.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 178

Copyright TIMBUS Consortium 2011 - 2013

Jim, Y. Simmhan, E. Stephan and J. Van den Bussche, “The Open Provenance Model core specification

(v1.1),” Elsevier, 2010.

[22] TIMBUS consortium, D4.3: "Dependency Models Iter. 2", 2013.

[23] TIMBUS consortium, D6.3: "Legalities Lifecycle Management", 2013.

[24] TIMBUS consortium, D4.8: "Refined DP & Intelligent Enterprise", 2013.

[25] TIMBUS consortium, D4.1: "DP & Intelligent Enterprise Risk Management", 2012.

[26] ISO/IEC, Guide 73. Risk management. Vocabulary. Guidelines for use in standards., 2002.

[27] TIMBUS consortium, D8.2: "Use Case Specific Risks".

[28] TIMBUS consortium, D9.2: "Use-Case Specific Risks".

[29] Object Management Group, “Business Process Model and Notation (BPMN),” 2011.

[30] IEEE Task Force on Process Mining, “Process Mining Manifesto,” 2011.

[31] The Open Group, “TOGAF® Version 9.1,” 2011.

[32] TIMBUS consortium, D6.5: "Populating and Accessing Context", 2013.

[33] M. A. Neumann, H. Miri, J. Thoms, G. Antunes, R. Mayer and M. Beigl, “Towards a Decision Support

Architecture for Digital Preservation of Business Processes,” in International Conference on

Preservation of Digital Objects (iPres2012), 2012.

[34] R. Treinen and S. Zacchiroli, “Description of the CUDF Format,” CoRR, vol. abs/0811.3621, 2008.

[35] C. Becker, H. Kulovits, M. Guttenbrunner, S. Strodl, A. Rauber and H. Hofman, “Systematic planning for

digital preservation: evaluating potential strategies and building preservation plans,” International

Journal on Digital Libraries, vol. 10, no. 4, pp. 133-157, 2009.

[36] B. Matthews, A. Shaon, B. Juan and C. Jones, “Brian Matthews, Arif Shaon, Juan Bicarregui and

Catherine Jones,” The International Journal of Digital Curation, vol. 5, no. 1, pp. 91-105, 2010.

[37] M. Guttenbrunner, “Preserving Interactive Content: Strategies, Significant Properties and Automatic

Testing,” in Workshop on Data Analysis (WDA'2008), Dedinky, Slovakia, 2008.

[38] M. Guttenbrunner and A. Rauber, “A Measurement Framework for Evaluating Emulators for Digital

Preservation,” ACM Transactions on Information Systems (TOIS), vol. 30, no. 2, 3 2012.

[39] G. Knight and M. Pennock, “Data Without Meaning: Establishing the Significant Properties of Digital

Research,” The International Journal of Digital Curation, vol. 4, no. 1, pp. 159-174, 2009.

[40] InSPECT consortium, “Final Report,” 2009.

[41] P. Trezentos, I. Lynce and A. L. Oliveira, “Apt-pbo: solving the software dependency problem using

pseudo-boolean optimization,” in ASE '10 Proceedings of the IEEE/ACM international conference on

Automated software engineering, New York, NY, USA, 2010.

[42] J. A. Stafford, D. J. Richardson and A. L. Wolf, “Chaining: A Software Architecture Dependence Analysis

Technique,” Technical Report CU-CS-845-97, Department of Computer Science, University of Colorado,

1997.

[43] J. A. Stafford and A. L. Wolf., “Architecture-level dependence analysis in support of software

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 179

Copyright TIMBUS Consortium 2011 - 2013

maintenance,” in Proceedings of the third international workshop on Software architecture (ISAW '98),

New York, NY, USA, 1998.

[44] PREMIS Editorial Committee, “PREMIS Data Dictionary Version 2.2,” 2012.

[45] T. Miksa, R. Mayer and A. Rauber, “Ensuring Sustainability of Web Services Dependent Processes,”

International Journal of Computational Science and Engineering (IJCSE), 2013.

[46] TIMBUS consortium, D9.3: "Definition of an eHealth business process and requirements specification

for Digital Preservations", 2013.

[47] S. Strodl, P. Petrov and A. Rauber, “ Research on Digital Preservation within projects co-funded by the

European Union in the ICT programme,” 2011.

[48] BCG The Boston Consulting Group, M&A: Ready for Liftoff? A survey of European Companies’ Merger

and Acquisition Plans for 2010, 2009.

[49] D. Draws, S. Euteneuer, D. Simon and F. Simon, “Short Term Preservation for Software Industry,” in

Proceedings of the 8th International Conference on Preservation of Digital Objects (iPres 2011), 2011.

[50] TIMBUS consortium, D4.4: Legal/Contractual process for execution and exhumation - Overview.

[51] ESCROWGUIDE - Source Code Escrow - Guidelines for Acquirers, Developers, Escrow Agents and Quality

Assessors - Part 2: A guide to using source code escrow to protect procurement, 1999.

[52] ESCROWGUIDE - Source Code Escrow - Guidelines for Acquirers, Developers, Escrow Agents and Quality

Assessors.

[53] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in Companion to the 19th annual ACM SIGPLAN

conference on Object-oriented programming systems, languages, and applications, New York, NY, USA,

2004.

[54] D. Low, “Protecting Java code via code obfuscation,” Crossroads, vol. 4, no. 3, pp. 21-23, #apr# 1998.

[55] C. Linn and S. Debray, “Obfuscation of executable code to improve resistance to static disassembly,” in

Proceedings of the 10th ACM conference on Computer and communications security, New York, NY,

USA, 2003.

[56] N. A. Naeem, M. Batchelder and L. Hendren, “Metrics for Measuring the Effectiveness of Decompilers

and Obfuscators,” in Proceedings of the 15th IEEE International Conference on Program

Comprehension, Washington, DC, USA, 2007.

[57] F. Simon, O. Seng and T. Mohaupt, Code-Quality-Management - technische Qualit{\"a}t industrieller

Softwaresysteme transparent und vergleichbar gemacht, dpunkt.verlag, 2006, pp. I-XVII, 1-340.

[58] P. Hamill, Unit test frameworks, First ed., M. Hendrickson, Ed., O'Reilly Media, Inc., 2004, p. 4 ff..

[59] R. Allen, “A Formal Approach to Software Architecture,” 1997.

[60] P. Weirich, Decision Space: Multidimensional Utility Analysis, Cambridge University Press, 2001.

[61] H. Zhang, “An investigation of the relationships between lines of code and defects,” in Software

Maintenance, 2009. ICSM 2009. IEEE International Conference on, 2009.

[62] R. Vivanco and N. Pizzi, “Identifying effective software metrics using genetic algorithms,” in Electrical

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 180

Copyright TIMBUS Consortium 2011 - 2013

and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Conference on, 2003.

[63] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineering, vol. 2, no. 4, pp.

308-320, December 1976.

[64] T. Williams, M. Mercer, J. Mucha and R. Kapur, “Code coverage, what does it mean in terms of

quality?,” in Reliability and Maintainability Symposium, 2001. Proceedings. Annual, 2001.

[65] Sonar, What makes Checkstyle, PMD, Findbugs and Macker complementary ?.

[66] R. P. Buse and W. R. Weimer, “Learning a Metric for Code Readability,” IEEE Transactions on Software

Engineering, vol. 36, no. 4, pp. 546-558, July/August 2010.

[67] R. P. Buse and W. R. Weimer, “A metric for software readability,” in Proceedings of the 2008

international symposium on Software testing and analysis, New York, NY, USA, 2008.

[68] D. Posnett, A. Hindle and P. Devanbu, “A simpler model of software readability,” in Proceedings of the

8th Working Conference on Mining Software Repositories, New York, NY, USA, 2011.

[69] M. H. Halstead, Elements of Software Science (Operating and programming systems series), New York,

NY, USA: Elsevier Science Inc., 1977.

[70] N. S. Coulter, “Software Science and Cognitive Psychology,” IEEE Transactions on Software Engineering,

vol. 9, no. 2, pp. 166-171, March 1983.

[71] D. Coleman, D. Ash, B. Lowther and P. Oman, “Using Metrics to Evaluate Software System

Maintainability,” Computer, vol. 27, no. 8, pp. 44-49, August 1994.

[72] Z. Li and Y. Zhou, “PR-Miner: automatically extracting implicit programming rules and detecting

violations in large software code,” in Proceedings of the 10th European software engineering

conference held jointly with 13th ACM SIGSOFT international symposium on Foundations of software

engineering, New York, NY, USA, 2005.

[73] C. Le Goues and W. Weimer, “Measuring Code Quality to Improve Specification Mining,” IEEE

Transactions on Software Engineering, vol. 38, no. 1, pp. 175-190, January 2012.

[74] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia and E. Merlo, “Recovering Traceability Links between

Code and Documentation,” IEEE Transactions on Software Engineering, vol. 28, no. 10, pp. 970-983,

October 2002.

[75] W. H. DuBay, The Principles of Readability, 2004.

[76] R. Flesch, How to Write Plain English,

http://www.mang.canterbury.ac.nz/writing_guide/writing/flesch.shtml, accessed 13.03.2013.

[77] L. Tan, D. Yuan, G. Krishna and Y. Zhou, “/*icomment: bugs or bad comments?*/,” in Proceedings of

twenty-first ACM SIGOPS symposium on Operating systems principles, New York, NY, USA, 2007.

[78] N. Khamis, R. Witte and J. Rilling, “Automatic quality assessment of source code comments: the

JavadocMiner,” in Proceedings of the Natural language processing and information systems, and 15th

international conference on Applications of natural language to information systems, Berlin,

Heidelberg, 2010.

[79] R. Witte, B. Sateli, N. Khamis and J. Rilling, “Intelligent software development environments:

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 181

Copyright TIMBUS Consortium 2011 - 2013

integrating natural language processing with the eclipse platform,” in Proceedings of the 24th

Canadian conference on Advances in artificial intelligence, Berlin, Heidelberg, 2011.

[80] O. Arafat and D. Riehle, “The commenting practice of open source,” in Proceedings of the 24th ACM

SIGPLAN conference companion on Object oriented programming systems languages and applications,

New York, NY, USA, 2009.

[81] D. M. German, P. C. Rigby and M.-A. Storey, “Using evolutionary annotations from change logs to

enhance program comprehension,” in Proceedings of the 2006 international workshop on Mining

software repositories, New York, NY, USA, 2006.

[82] W. B. Cavnar and J. M. Trenkle, “N-Gram-Based Text Categorization,” in In Proceedings of SDAIR-94,

3rd Annual Symposium on Document Analysis and Information Retrieval, 1994.

[83] G. Heyer, U. Quasthoff and T. Wittig, Text Mining: Wissensrohstoff Text, Balzert, Ed., Bochum: W3L

Verlag, 2005.

[84] M. Miłkowski, “Developing an open-source, rule-based proofreading tool,” Softw. Pract. Exper., vol. 40,

no. 7, pp. 543-566, 2010.

[85] T. Lavergne, T. Urvoy and F. Yvon, “Filtering artificial texts with statistical machine learning

techniques,” Language Resources and Evaluation, vol. 45, pp. 25-43, 2011.

[86] J. J. Marshall, “Reuse Readiness Levels as a Measure of Software Reusability,” in Geoscience and

Remote Sensing Symposium, 2008. IGARSS 2008., Boston, Massachusetts, USA, 2008.

[87] SonarSource SA, Java Metric Definitions,

http://docs.codehaus.org/display/SONAR/Java+Metric+Definitions, accessed 15.11.2012.

[88] C. C. Lee, JavaNCSS - A Source Measurement Suite for Java,

http://www.kclee.de/clemens/java/javancss/, accessed 15.11.2012.

[89] F. Mallet, Why you should (not?) upgrade to Sonar 1.9, http://www.sonarsource.org/why-you-should-

not-upgrad-to-sonar-19/, accessed 15.11.2012.

[90] Sonar, Manage Duplicated Code with Sonar, http://www.sonarsource.org/manage-duplicated-code-

with-sonar/, accessed 26.02.2012.

[91] InfoEther Inc., Design, http://pmd.sourceforge.net/pmd-5.0.1/rules/java/design.html, accessed

15.11.2012.

[92] SonarSource SA, SonarSource - sslr, https://github.com/SonarSource/sslr/, accessed 10.1.2013.

[93] knallgrau GmbH, Java Text Categorizing Library, http://textcat.sourceforge.net/, accessed 10.1.2013.

[94] Sonatype Inc., The Search Engine for The Central Repository, http://search.maven.org/, accessed

10.01.2013.

[95] D. Naber, LanguageTool - Style and Grammar Checker, http://www.languagetool.org/, accessed

10.01.2013.

[96] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton and J. Noble, “Qualitas Corpus: A

Curated Collection of Java Code for Empirical Studies,” in 2010 Asia Pacific Software Engineering

Conference (APSEC2010), 2010.

TIMBUS WP4 - Processes and Methods for Digitally Preserving Business Processes

Deliverable D4.6 Use Case Specific DP & Holistic Escrow

D4.6_M24_Use Case Specific DP & Holistic Escrow.docx Dissemination Level: Public Page 182

Copyright TIMBUS Consortium 2011 - 2013

[97] International Standard ISO/IEC 9126, Part 1, Software engineering – Product quality – Quality model,

2001.

[98] ISO, ISO 25010: Systems and software engineering —Systems and software Quality Requirements and

Evaluation (SQuaRE) — System and software quality models, 2010.

